亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Fine-Scale Mangrove Species Classification Based on UAV Multispectral and Hyperspectral Remote Sensing Using Machine Learning

高光谱成像 遥感 多光谱图像 红树林 比例(比率) 计算机科学 环境科学 人工智能 地质学 地理 地图学 生态学 生物
作者
Yuanzheng Yang,Zhouju Meng,Jiaxing Zu,Wenhua Cai,Li Wang,Hongxin Su,Jian Yang
出处
期刊:Remote Sensing [Multidisciplinary Digital Publishing Institute]
卷期号:16 (16): 3093-3093
标识
DOI:10.3390/rs16163093
摘要

Mangrove ecosystems play an irreplaceable role in coastal environments by providing essential ecosystem services. Diverse mangrove species have different functions due to their morphological and physiological characteristics. A precise spatial distribution map of mangrove species is therefore crucial for biodiversity maintenance and environmental conservation of coastal ecosystems. Traditional satellite data are limited in fine-scale mangrove species classification due to low spatial resolution and less spectral information. This study employed unmanned aerial vehicle (UAV) technology to acquire high-resolution multispectral and hyperspectral mangrove forest imagery in Guangxi, China. We leveraged advanced algorithms, including RFE-RF for feature selection and machine learning models (Adaptive Boosting (AdaBoost), eXtreme Gradient Boosting (XGBoost), Random Forest (RF), and Light Gradient Boosting Machine (LightGBM)), to achieve mangrove species mapping with high classification accuracy. The study assessed the classification performance of these four machine learning models for two types of image data (UAV multispectral and hyperspectral imagery), respectively. The results demonstrated that hyperspectral imagery had superiority over multispectral data by offering enhanced noise reduction and classification performance. Hyperspectral imagery produced mangrove species classification with overall accuracy (OA) higher than 91% across the four machine learning models. LightGBM achieved the highest OA of 97.15% and kappa coefficient (Kappa) of 0.97 based on hyperspectral imagery. Dimensionality reduction and feature extraction techniques were effectively applied to the UAV data, with vegetation indices proving to be particularly valuable for species classification. The present research underscored the effectiveness of UAV hyperspectral images using machine learning models for fine-scale mangrove species classification. This approach has the potential to significantly improve ecological management and conservation strategies, providing a robust framework for monitoring and safeguarding these essential coastal habitats.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
TT完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
8秒前
欣慰蚂蚁完成签到,获得积分10
10秒前
wtsow完成签到,获得积分0
11秒前
白雾完成签到 ,获得积分10
18秒前
19秒前
lillian完成签到 ,获得积分10
19秒前
今后应助谢耳朵采纳,获得10
20秒前
pegasus0802完成签到 ,获得积分10
21秒前
27秒前
38秒前
1234发布了新的文献求助10
43秒前
46秒前
Rn完成签到 ,获得积分10
47秒前
雪花精灵发布了新的文献求助10
51秒前
我是老大应助雪花精灵采纳,获得10
57秒前
东风完成签到,获得积分10
58秒前
Rondab应助科研通管家采纳,获得10
1分钟前
Rondab应助科研通管家采纳,获得10
1分钟前
Rondab应助科研通管家采纳,获得10
1分钟前
Rondab应助科研通管家采纳,获得10
1分钟前
翻译度完成签到,获得积分10
1分钟前
猴面包树完成签到 ,获得积分10
1分钟前
1234完成签到,获得积分10
1分钟前
無期完成签到 ,获得积分10
1分钟前
我爱陶子完成签到 ,获得积分10
1分钟前
edisonyan完成签到 ,获得积分10
1分钟前
Akim应助包宇采纳,获得10
1分钟前
1分钟前
xx发布了新的文献求助10
1分钟前
1分钟前
暖暖完成签到,获得积分10
1分钟前
1分钟前
包宇完成签到,获得积分20
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
linjiandefeng完成签到,获得积分10
1分钟前
CodeCraft应助xx采纳,获得10
2分钟前
2分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960053
求助须知:如何正确求助?哪些是违规求助? 3506261
关于积分的说明 11128552
捐赠科研通 3238225
什么是DOI,文献DOI怎么找? 1789617
邀请新用户注册赠送积分活动 871829
科研通“疑难数据库(出版商)”最低求助积分说明 803056