Fine-Scale Mangrove Species Classification Based on UAV Multispectral and Hyperspectral Remote Sensing Using Machine Learning

高光谱成像 遥感 多光谱图像 红树林 比例(比率) 计算机科学 环境科学 人工智能 地质学 地理 地图学 生态学 生物
作者
Yuanzheng Yang,Zhouju Meng,Jiaxing Zu,Wenhua Cai,Li Wang,Hongxin Su,Jian Yang
出处
期刊:Remote Sensing [MDPI AG]
卷期号:16 (16): 3093-3093
标识
DOI:10.3390/rs16163093
摘要

Mangrove ecosystems play an irreplaceable role in coastal environments by providing essential ecosystem services. Diverse mangrove species have different functions due to their morphological and physiological characteristics. A precise spatial distribution map of mangrove species is therefore crucial for biodiversity maintenance and environmental conservation of coastal ecosystems. Traditional satellite data are limited in fine-scale mangrove species classification due to low spatial resolution and less spectral information. This study employed unmanned aerial vehicle (UAV) technology to acquire high-resolution multispectral and hyperspectral mangrove forest imagery in Guangxi, China. We leveraged advanced algorithms, including RFE-RF for feature selection and machine learning models (Adaptive Boosting (AdaBoost), eXtreme Gradient Boosting (XGBoost), Random Forest (RF), and Light Gradient Boosting Machine (LightGBM)), to achieve mangrove species mapping with high classification accuracy. The study assessed the classification performance of these four machine learning models for two types of image data (UAV multispectral and hyperspectral imagery), respectively. The results demonstrated that hyperspectral imagery had superiority over multispectral data by offering enhanced noise reduction and classification performance. Hyperspectral imagery produced mangrove species classification with overall accuracy (OA) higher than 91% across the four machine learning models. LightGBM achieved the highest OA of 97.15% and kappa coefficient (Kappa) of 0.97 based on hyperspectral imagery. Dimensionality reduction and feature extraction techniques were effectively applied to the UAV data, with vegetation indices proving to be particularly valuable for species classification. The present research underscored the effectiveness of UAV hyperspectral images using machine learning models for fine-scale mangrove species classification. This approach has the potential to significantly improve ecological management and conservation strategies, providing a robust framework for monitoring and safeguarding these essential coastal habitats.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
芽芽豆完成签到 ,获得积分10
1秒前
2秒前
俗人发布了新的文献求助10
2秒前
温柔的蛋挞完成签到,获得积分20
2秒前
zcj完成签到,获得积分10
7秒前
11秒前
hahhaha完成签到,获得积分10
12秒前
14秒前
15秒前
小李完成签到,获得积分10
16秒前
hahhaha发布了新的文献求助10
22秒前
任博文完成签到 ,获得积分10
23秒前
汉堡包应助123采纳,获得10
24秒前
bkagyin应助郝宝真采纳,获得10
25秒前
爆米花应助小猴子采纳,获得10
26秒前
sally完成签到 ,获得积分10
26秒前
舒服的八宝粥完成签到 ,获得积分10
28秒前
fmwang完成签到,获得积分10
28秒前
29秒前
SciGPT应助lsq108采纳,获得10
31秒前
33秒前
123发布了新的文献求助10
35秒前
37秒前
40秒前
细心寒凡发布了新的文献求助10
40秒前
有点小帅发布了新的文献求助10
41秒前
41秒前
羊咩咩哒完成签到,获得积分10
42秒前
xx发布了新的文献求助10
43秒前
SXYYY完成签到,获得积分10
43秒前
一二完成签到,获得积分10
43秒前
46秒前
47秒前
细心寒凡完成签到 ,获得积分10
48秒前
小羊睡不着数什么完成签到 ,获得积分10
48秒前
49秒前
背后访风发布了新的文献求助10
51秒前
54秒前
细腻新筠完成签到,获得积分10
55秒前
yumi完成签到,获得积分10
55秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3163007
求助须知:如何正确求助?哪些是违规求助? 2813990
关于积分的说明 7902812
捐赠科研通 2473633
什么是DOI,文献DOI怎么找? 1316952
科研通“疑难数据库(出版商)”最低求助积分说明 631560
版权声明 602187