Fine-Scale Mangrove Species Classification Based on UAV Multispectral and Hyperspectral Remote Sensing Using Machine Learning

高光谱成像 遥感 多光谱图像 红树林 比例(比率) 计算机科学 环境科学 人工智能 地质学 地理 地图学 生态学 生物
作者
Yuanzheng Yang,Zhouju Meng,Jiaxing Zu,Wenhua Cai,Li Wang,Hongxin Su,Jian Yang
出处
期刊:Remote Sensing [Multidisciplinary Digital Publishing Institute]
卷期号:16 (16): 3093-3093
标识
DOI:10.3390/rs16163093
摘要

Mangrove ecosystems play an irreplaceable role in coastal environments by providing essential ecosystem services. Diverse mangrove species have different functions due to their morphological and physiological characteristics. A precise spatial distribution map of mangrove species is therefore crucial for biodiversity maintenance and environmental conservation of coastal ecosystems. Traditional satellite data are limited in fine-scale mangrove species classification due to low spatial resolution and less spectral information. This study employed unmanned aerial vehicle (UAV) technology to acquire high-resolution multispectral and hyperspectral mangrove forest imagery in Guangxi, China. We leveraged advanced algorithms, including RFE-RF for feature selection and machine learning models (Adaptive Boosting (AdaBoost), eXtreme Gradient Boosting (XGBoost), Random Forest (RF), and Light Gradient Boosting Machine (LightGBM)), to achieve mangrove species mapping with high classification accuracy. The study assessed the classification performance of these four machine learning models for two types of image data (UAV multispectral and hyperspectral imagery), respectively. The results demonstrated that hyperspectral imagery had superiority over multispectral data by offering enhanced noise reduction and classification performance. Hyperspectral imagery produced mangrove species classification with overall accuracy (OA) higher than 91% across the four machine learning models. LightGBM achieved the highest OA of 97.15% and kappa coefficient (Kappa) of 0.97 based on hyperspectral imagery. Dimensionality reduction and feature extraction techniques were effectively applied to the UAV data, with vegetation indices proving to be particularly valuable for species classification. The present research underscored the effectiveness of UAV hyperspectral images using machine learning models for fine-scale mangrove species classification. This approach has the potential to significantly improve ecological management and conservation strategies, providing a robust framework for monitoring and safeguarding these essential coastal habitats.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
田様应助吹风机采纳,获得10
刚刚
自然的霸完成签到,获得积分10
1秒前
深情安青应助珊珊采纳,获得10
1秒前
壮观的夏蓉完成签到,获得积分0
1秒前
机灵似狮发布了新的文献求助10
1秒前
云深不知处完成签到,获得积分10
2秒前
康丽完成签到,获得积分10
2秒前
4秒前
橘酥酥呀完成签到,获得积分20
4秒前
4秒前
Ava应助微眠采纳,获得10
4秒前
向浩完成签到,获得积分10
4秒前
英姑应助科研通管家采纳,获得10
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
CCY完成签到,获得积分10
5秒前
领导范儿应助科研通管家采纳,获得10
5秒前
Orange应助科研通管家采纳,获得10
5秒前
5秒前
long应助科研通管家采纳,获得10
6秒前
6秒前
FashionBoy应助科研通管家采纳,获得10
6秒前
6秒前
斯文败类应助科研通管家采纳,获得10
6秒前
Ava应助科研通管家采纳,获得10
6秒前
Wind应助小鲤鱼采纳,获得20
6秒前
星辰大海应助科研通管家采纳,获得10
6秒前
Lyg发布了新的文献求助10
6秒前
彭于晏应助科研通管家采纳,获得10
6秒前
淡定从凝完成签到,获得积分10
6秒前
6秒前
量子星尘发布了新的文献求助10
7秒前
wnche完成签到,获得积分10
7秒前
月光族完成签到,获得积分10
7秒前
小小完成签到,获得积分20
7秒前
7秒前
Oil发布了新的文献求助10
7秒前
领导范儿应助向阳采纳,获得10
7秒前
1111完成签到,获得积分10
8秒前
9秒前
阿治发布了新的文献求助10
10秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
TOWARD A HISTORY OF THE PALEOZOIC ASTEROIDEA (ECHINODERMATA) 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Handbook of Social and Emotional Learning 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5118837
求助须知:如何正确求助?哪些是违规求助? 4324693
关于积分的说明 13473527
捐赠科研通 4157793
什么是DOI,文献DOI怎么找? 2278607
邀请新用户注册赠送积分活动 1280375
关于科研通互助平台的介绍 1219167