Machine learning for high-precision simulation of dissolved organic matter in sewer: Overcoming data restrictions with generative adversarial networks

计算机科学 机器学习 人工智能 可解释性 转化(遗传学) 生活污水管 过程(计算) 数据挖掘 工程类 环境工程 化学 生物化学 基因 操作系统
作者
Feng Hou,Shuai Liu,Wanxin Yin,Lili Gan,Hong-Tao Pang,Jia-Qiang Lv,Ying Liu,Hongcheng Wang
出处
期刊:Science of The Total Environment [Elsevier BV]
卷期号:947: 174469-174469 被引量:3
标识
DOI:10.1016/j.scitotenv.2024.174469
摘要

Understanding the transformation process of dissolved organic matter (DOM) in the sewer is imperative for comprehending material circulation and energy flow within the sewer. The machine learning (ML) model provides a feasible way to comprehend and simulate the DOM transformation process in the sewer. In contrast, the model accuracy is limited by data restriction. In this study, a novel framework by integrating generative adversarial network algorithm-machine learning models (GAN-ML) was established to overcome the drawbacks caused by the data restriction in the simulation of the DOM transformation process, and humification index (HIX) was selected as the output variable to evaluate the model performance. Results indicate that the GAN algorithm's virtual dataset could generally enhance the simulation performance of regression models, deep learning models, and ensemble models for the DOM transformation process The highest prediction accuracy on HIX (R2 of 0.5389 and RMSE of 0.0273) was achieved by the adaptive boosting model which belongs to ensemble models trained by the virtual dataset of 1000 samples. Interpretability analysis revealed that dissolved oxygen (DO) and pH emerge as critical factors warranting attention for the future development of management strategies to regulate the DOM transformation process in sewers. The integrated framework proposed a potential approach for the comprehensive understanding and high-precision simulation of the DOM transformation process, paving the way for advancing sewer management strategy under data restriction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Maestro_S应助威武荔枝采纳,获得20
刚刚
科研通AI5应助kkkk采纳,获得10
刚刚
zhu完成签到,获得积分10
刚刚
1秒前
智海瑞完成签到,获得积分10
1秒前
2秒前
2秒前
丘比特应助kenhahahaha采纳,获得10
2秒前
2秒前
3秒前
爬不起来发布了新的文献求助10
3秒前
3秒前
coco发布了新的文献求助10
4秒前
凶狠的傲晴完成签到,获得积分10
4秒前
会发光的小叶子完成签到,获得积分10
5秒前
丘比特应助科研通管家采纳,获得10
5秒前
天天快乐应助科研通管家采纳,获得10
5秒前
上官若男应助科研通管家采纳,获得10
5秒前
科目三应助科研通管家采纳,获得10
5秒前
浮游应助rxh采纳,获得10
5秒前
陈冰应助文件撤销了驳回
5秒前
英俊的铭应助科研通管家采纳,获得10
5秒前
霸气南珍应助科研通管家采纳,获得10
5秒前
酷波er应助科研通管家采纳,获得10
5秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
夢詮完成签到 ,获得积分10
6秒前
香蕉觅云应助科研通管家采纳,获得10
6秒前
CodeCraft应助科研通管家采纳,获得10
6秒前
6秒前
烟花应助科研通管家采纳,获得10
6秒前
研友_VZG7GZ应助科研通管家采纳,获得10
6秒前
852应助科研通管家采纳,获得10
6秒前
6秒前
华仔应助科研通管家采纳,获得10
6秒前
柔弱翎应助科研通管家采纳,获得10
7秒前
孙永坤完成签到,获得积分10
7秒前
zhu发布了新的文献求助10
7秒前
7秒前
7秒前
yellow发布了新的文献求助10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Feigin and Cherry's Textbook of Pediatric Infectious Diseases Ninth Edition 2024 4000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
Socialization In The Context Of The Family: Parent-Child Interaction 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5005236
求助须知:如何正确求助?哪些是违规求助? 4248931
关于积分的说明 13239041
捐赠科研通 4048486
什么是DOI,文献DOI怎么找? 2214899
邀请新用户注册赠送积分活动 1224821
关于科研通互助平台的介绍 1145241