Machine learning for high-precision simulation of dissolved organic matter in sewer: Overcoming data restrictions with generative adversarial networks

计算机科学 机器学习 人工智能 可解释性 转化(遗传学) 生活污水管 过程(计算) 数据挖掘 工程类 环境工程 化学 生物化学 基因 操作系统
作者
Feng Hou,Shuai Liu,Wanxin Yin,Lili Gan,Hong-Tao Pang,Jiaqiang Lv,Ying Liu,Hongcheng Wang
出处
期刊:Science of The Total Environment [Elsevier]
卷期号:947: 174469-174469
标识
DOI:10.1016/j.scitotenv.2024.174469
摘要

Understanding the transformation process of dissolved organic matter (DOM) in the sewer is imperative for comprehending material circulation and energy flow within the sewer. The machine learning (ML) model provides a feasible way to comprehend and simulate the DOM transformation process in the sewer. In contrast, the model accuracy is limited by data restriction. In this study, a novel framework by integrating generative adversarial network algorithm-machine learning models (GAN-ML) was established to overcome the drawbacks caused by the data restriction in the simulation of the DOM transformation process, and humification index (HIX) was selected as the output variable to evaluate the model performance. Results indicate that the GAN algorithm's virtual dataset could generally enhance the simulation performance of regression models, deep learning models, and ensemble models for the DOM transformation process The highest prediction accuracy on HIX (R2 of 0.5389 and RMSE of 0.0273) was achieved by the adaptive boosting model which belongs to ensemble models trained by the virtual dataset of 1000 samples. Interpretability analysis revealed that dissolved oxygen (DO) and pH emerge as critical factors warranting attention for the future development of management strategies to regulate the DOM transformation process in sewers. The integrated framework proposed a potential approach for the comprehensive understanding and high-precision simulation of the DOM transformation process, paving the way for advancing sewer management strategy under data restriction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
传奇3应助yoyo122采纳,获得10
刚刚
传奇3应助躺平的牙牙采纳,获得10
刚刚
刚刚
七七发布了新的文献求助10
1秒前
纵念发布了新的文献求助10
1秒前
Delia发布了新的文献求助10
2秒前
恰分的胖胖完成签到,获得积分10
2秒前
2秒前
yanxun完成签到,获得积分10
2秒前
2秒前
3秒前
3秒前
朝阳应助西岭采纳,获得10
3秒前
小骆驼应助西岭采纳,获得10
3秒前
3秒前
4秒前
ningwu完成签到,获得积分10
5秒前
5秒前
yyw完成签到,获得积分10
5秒前
5秒前
yanxun发布了新的文献求助10
5秒前
6秒前
纵念完成签到,获得积分10
6秒前
科学家发布了新的文献求助10
7秒前
LSS发布了新的文献求助10
7秒前
原鑫完成签到,获得积分10
8秒前
ArthurWaley发布了新的文献求助10
8秒前
8秒前
zhangshaoqi发布了新的文献求助10
9秒前
9秒前
dongli6536完成签到,获得积分10
9秒前
决堤完成签到,获得积分10
9秒前
田様应助喽噜嘟咦呀采纳,获得10
10秒前
苏书白应助兴奋白枫采纳,获得10
10秒前
呱呱乐发布了新的文献求助100
11秒前
11秒前
善良的水蓉完成签到,获得积分10
12秒前
隐形曼青应助Delia采纳,获得10
12秒前
12秒前
12秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
A new approach of magnetic circular dichroism to the electronic state analysis of intact photosynthetic pigments 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3148993
求助须知:如何正确求助?哪些是违规求助? 2800076
关于积分的说明 7838336
捐赠科研通 2457543
什么是DOI,文献DOI怎么找? 1307913
科研通“疑难数据库(出版商)”最低求助积分说明 628328
版权声明 601685