Machine learning for high-precision simulation of dissolved organic matter in sewer: Overcoming data restrictions with generative adversarial networks

计算机科学 机器学习 人工智能 可解释性 转化(遗传学) 生活污水管 过程(计算) 数据挖掘 工程类 环境工程 化学 生物化学 基因 操作系统
作者
Feng Hou,Shuai Liu,Wanxin Yin,Lili Gan,Hong-Tao Pang,Jia-Qiang Lv,Ying Liu,Hongcheng Wang
出处
期刊:Science of The Total Environment [Elsevier BV]
卷期号:947: 174469-174469 被引量:3
标识
DOI:10.1016/j.scitotenv.2024.174469
摘要

Understanding the transformation process of dissolved organic matter (DOM) in the sewer is imperative for comprehending material circulation and energy flow within the sewer. The machine learning (ML) model provides a feasible way to comprehend and simulate the DOM transformation process in the sewer. In contrast, the model accuracy is limited by data restriction. In this study, a novel framework by integrating generative adversarial network algorithm-machine learning models (GAN-ML) was established to overcome the drawbacks caused by the data restriction in the simulation of the DOM transformation process, and humification index (HIX) was selected as the output variable to evaluate the model performance. Results indicate that the GAN algorithm's virtual dataset could generally enhance the simulation performance of regression models, deep learning models, and ensemble models for the DOM transformation process The highest prediction accuracy on HIX (R2 of 0.5389 and RMSE of 0.0273) was achieved by the adaptive boosting model which belongs to ensemble models trained by the virtual dataset of 1000 samples. Interpretability analysis revealed that dissolved oxygen (DO) and pH emerge as critical factors warranting attention for the future development of management strategies to regulate the DOM transformation process in sewers. The integrated framework proposed a potential approach for the comprehensive understanding and high-precision simulation of the DOM transformation process, paving the way for advancing sewer management strategy under data restriction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
六六七七完成签到,获得积分10
1秒前
1秒前
科目三应助咻咻采纳,获得10
1秒前
zh发布了新的文献求助10
1秒前
2秒前
3秒前
杰杰发布了新的文献求助10
4秒前
5秒前
6秒前
乖拉发布了新的文献求助10
8秒前
9秒前
晓晓发布了新的文献求助10
10秒前
量子星尘发布了新的文献求助10
11秒前
DTL哈哈完成签到 ,获得积分10
13秒前
13秒前
科研通AI5应助zzhhhzz采纳,获得10
14秒前
tina3058完成签到,获得积分10
15秒前
舟舟完成签到,获得积分10
15秒前
16秒前
认真的机器猫完成签到,获得积分10
16秒前
18秒前
杜若飞发布了新的文献求助10
18秒前
赵小胖完成签到,获得积分10
19秒前
20秒前
黎周二完成签到,获得积分10
20秒前
微笑采文发布了新的文献求助10
21秒前
ali完成签到 ,获得积分10
21秒前
香蕉觅云应助杰杰采纳,获得10
22秒前
量子星尘发布了新的文献求助10
23秒前
zh发布了新的文献求助10
24秒前
26秒前
26秒前
27秒前
量子星尘发布了新的文献求助10
28秒前
Wang完成签到,获得积分10
28秒前
29秒前
倒数第二完成签到,获得积分10
29秒前
福福完成签到,获得积分10
29秒前
31秒前
Vroom发布了新的文献求助10
31秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
An experimental and analytical investigation on the fatigue behaviour of fuselage riveted lap joints: The significance of the rivet squeeze force, and a comparison of 2024-T3 and Glare 3 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
ALUMINUM STANDARDS AND DATA 500
Walter Gilbert: Selected Works 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3664528
求助须知:如何正确求助?哪些是违规求助? 3224505
关于积分的说明 9757908
捐赠科研通 2934419
什么是DOI,文献DOI怎么找? 1606858
邀请新用户注册赠送积分活动 758873
科研通“疑难数据库(出版商)”最低求助积分说明 735018