Machine learning for high-precision simulation of dissolved organic matter in sewer: Overcoming data restrictions with generative adversarial networks

计算机科学 机器学习 人工智能 可解释性 转化(遗传学) 生活污水管 过程(计算) 数据挖掘 工程类 环境工程 化学 生物化学 基因 操作系统
作者
Feng Hou,Shuai Liu,Wanxin Yin,Lili Gan,Hong-Tao Pang,Jia-Qiang Lv,Ying Liu,Hongcheng Wang
出处
期刊:Science of The Total Environment [Elsevier]
卷期号:947: 174469-174469 被引量:3
标识
DOI:10.1016/j.scitotenv.2024.174469
摘要

Understanding the transformation process of dissolved organic matter (DOM) in the sewer is imperative for comprehending material circulation and energy flow within the sewer. The machine learning (ML) model provides a feasible way to comprehend and simulate the DOM transformation process in the sewer. In contrast, the model accuracy is limited by data restriction. In this study, a novel framework by integrating generative adversarial network algorithm-machine learning models (GAN-ML) was established to overcome the drawbacks caused by the data restriction in the simulation of the DOM transformation process, and humification index (HIX) was selected as the output variable to evaluate the model performance. Results indicate that the GAN algorithm's virtual dataset could generally enhance the simulation performance of regression models, deep learning models, and ensemble models for the DOM transformation process The highest prediction accuracy on HIX (R2 of 0.5389 and RMSE of 0.0273) was achieved by the adaptive boosting model which belongs to ensemble models trained by the virtual dataset of 1000 samples. Interpretability analysis revealed that dissolved oxygen (DO) and pH emerge as critical factors warranting attention for the future development of management strategies to regulate the DOM transformation process in sewers. The integrated framework proposed a potential approach for the comprehensive understanding and high-precision simulation of the DOM transformation process, paving the way for advancing sewer management strategy under data restriction.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
活泼小笼包完成签到,获得积分10
1秒前
机智的乌完成签到,获得积分10
1秒前
Lukomere发布了新的文献求助10
1秒前
1秒前
tt完成签到 ,获得积分10
2秒前
酷波er应助Dallas采纳,获得10
2秒前
2秒前
狐尔莫发布了新的文献求助10
3秒前
shepherd完成签到,获得积分10
3秒前
momo发布了新的文献求助10
3秒前
突突突完成签到,获得积分10
3秒前
4秒前
Akun发布了新的文献求助10
4秒前
李爱国应助整齐的雁丝采纳,获得10
5秒前
5秒前
6秒前
留胡子的海豚完成签到,获得积分10
6秒前
娜行完成签到 ,获得积分10
6秒前
6秒前
zxs666完成签到,获得积分10
7秒前
Luna完成签到 ,获得积分10
7秒前
728完成签到,获得积分10
7秒前
Kleen发布了新的文献求助10
7秒前
7秒前
谨慎妙菡完成签到,获得积分10
8秒前
科研通AI6应助科研通管家采纳,获得100
8秒前
8秒前
8秒前
8秒前
呆萌的觅松完成签到,获得积分10
8秒前
小铭同学完成签到,获得积分10
8秒前
sure完成签到,获得积分10
8秒前
研友_V8R99Z完成签到,获得积分10
8秒前
潇洒的冰淇淋完成签到,获得积分10
8秒前
Lucas应助Winter采纳,获得10
8秒前
Linz完成签到,获得积分10
8秒前
名副棋实完成签到,获得积分10
9秒前
123胡完成签到,获得积分10
9秒前
02完成签到 ,获得积分10
9秒前
wsafhgfjb发布了新的文献求助10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573825
求助须知:如何正确求助?哪些是违规求助? 4660098
关于积分的说明 14727788
捐赠科研通 4599933
什么是DOI,文献DOI怎么找? 2524546
邀请新用户注册赠送积分活动 1494900
关于科研通互助平台的介绍 1464997