Radiomic analysis reveals diverse prognostic and molecular insights into the response of breast cancer to neoadjuvant chemotherapy: a multicohort study

乳腺癌 医学 肿瘤科 多元分析 比例危险模型 内科学 新辅助治疗 癌症 化疗 生存分析 多元统计 病态的 子群分析 完全响应 机器学习 置信区间 计算机科学
作者
Ming Fan,Kailang Wang,Da Pan,Xuan Cao,Zhihao Li,Songlin He,Sangma Xie,Chao You,Yajia Gu,Lihua Li
出处
期刊:Journal of Translational Medicine [Springer Nature]
卷期号:22 (1) 被引量:1
标识
DOI:10.1186/s12967-024-05487-y
摘要

Abstract Background Breast cancer patients exhibit various response patterns to neoadjuvant chemotherapy (NAC). However, it is uncertain whether diverse tumor response patterns to NAC in breast cancer patients can predict survival outcomes. We aimed to develop and validate radiomic signatures indicative of tumor shrinkage and therapeutic response for improved survival analysis. Methods This retrospective, multicohort study included three datasets. The development dataset, consisting of preoperative and early NAC DCE-MRI data from 255 patients, was used to create an imaging signature-based multitask model for predicting tumor shrinkage patterns and pathological complete response (pCR). Patients were categorized as pCR, nonpCR with concentric shrinkage (CS), or nonpCR with non-CS, with prediction performance measured by the area under the curve (AUC). The prognostic validation dataset (n = 174) was used to assess the prognostic value of the imaging signatures for overall survival (OS) and recurrence-free survival (RFS) using a multivariate Cox model. The gene expression data (genomic validation dataset, n = 112) were analyzed to determine the biological basis of the response patterns. Results The multitask learning model, utilizing 17 radiomic signatures, achieved AUCs of 0.886 for predicting tumor shrinkage and 0.760 for predicting pCR. Patients who achieved pCR had the best survival outcomes, while nonpCR patients with a CS pattern had better survival than non-CS patients did, with significant differences in OS and RFS (p = 0.00012 and p = 0.00063, respectively). Gene expression analysis highlighted the involvement of the IL-17 and estrogen signaling pathways in response variability. Conclusions Radiomic signatures effectively predict NAC response patterns in breast cancer patients and are associated with specific survival outcomes. The CS pattern in nonpCR patients indicates better survival.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
谦让幻珊发布了新的文献求助10
1秒前
1秒前
hy1234完成签到 ,获得积分10
3秒前
junfeiwang发布了新的文献求助10
5秒前
脑洞疼应助正直美女采纳,获得10
5秒前
靓丽的魔镜发布了新的文献求助200
5秒前
519完成签到,获得积分10
6秒前
旋律应助现实马里奥采纳,获得10
6秒前
芋圆粒发布了新的文献求助10
6秒前
瓜瓜程完成签到 ,获得积分10
7秒前
上官若男应助michaelzhao采纳,获得10
8秒前
WZH完成签到 ,获得积分10
8秒前
10秒前
情怀应助端庄芙采纳,获得10
11秒前
dada完成签到 ,获得积分10
13秒前
庸人自扰发布了新的文献求助10
13秒前
康康完成签到,获得积分10
14秒前
14秒前
FashionBoy应助junfeiwang采纳,获得10
14秒前
14秒前
Sun发布了新的文献求助10
15秒前
17秒前
正直美女发布了新的文献求助10
17秒前
瓜瓜程发布了新的文献求助10
18秒前
尊敬的雪一完成签到,获得积分20
18秒前
19秒前
20秒前
cocolu应助深情的迎海采纳,获得10
22秒前
23秒前
liuda发布了新的文献求助10
27秒前
28秒前
wanci应助逆鳞采纳,获得10
29秒前
32秒前
32秒前
33秒前
文静的忆文完成签到,获得积分10
33秒前
33秒前
33秒前
cocolu应助哪有你好采纳,获得10
35秒前
baby的跑男发布了新的文献求助10
35秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 量子力学 冶金 电极
热门帖子
关注 科研通微信公众号,转发送积分 3316416
求助须知:如何正确求助?哪些是违规求助? 2948109
关于积分的说明 8539240
捐赠科研通 2624069
什么是DOI,文献DOI怎么找? 1435722
科研通“疑难数据库(出版商)”最低求助积分说明 665672
邀请新用户注册赠送积分活动 651532