Radiomic analysis reveals diverse prognostic and molecular insights into the response of breast cancer to neoadjuvant chemotherapy: a multicohort study

乳腺癌 医学 肿瘤科 多元分析 比例危险模型 内科学 新辅助治疗 癌症 化疗 生存分析 多元统计 病态的 子群分析 完全响应 机器学习 置信区间 计算机科学
作者
Ming Fan,Kailang Wang,Da Pan,Xuan Cao,Zhihao Li,Songlin He,Sangma Xie,Chao You,Yajia Gu,Lihua Li
出处
期刊:Journal of Translational Medicine [BioMed Central]
卷期号:22 (1) 被引量:1
标识
DOI:10.1186/s12967-024-05487-y
摘要

Abstract Background Breast cancer patients exhibit various response patterns to neoadjuvant chemotherapy (NAC). However, it is uncertain whether diverse tumor response patterns to NAC in breast cancer patients can predict survival outcomes. We aimed to develop and validate radiomic signatures indicative of tumor shrinkage and therapeutic response for improved survival analysis. Methods This retrospective, multicohort study included three datasets. The development dataset, consisting of preoperative and early NAC DCE-MRI data from 255 patients, was used to create an imaging signature-based multitask model for predicting tumor shrinkage patterns and pathological complete response (pCR). Patients were categorized as pCR, nonpCR with concentric shrinkage (CS), or nonpCR with non-CS, with prediction performance measured by the area under the curve (AUC). The prognostic validation dataset (n = 174) was used to assess the prognostic value of the imaging signatures for overall survival (OS) and recurrence-free survival (RFS) using a multivariate Cox model. The gene expression data (genomic validation dataset, n = 112) were analyzed to determine the biological basis of the response patterns. Results The multitask learning model, utilizing 17 radiomic signatures, achieved AUCs of 0.886 for predicting tumor shrinkage and 0.760 for predicting pCR. Patients who achieved pCR had the best survival outcomes, while nonpCR patients with a CS pattern had better survival than non-CS patients did, with significant differences in OS and RFS (p = 0.00012 and p = 0.00063, respectively). Gene expression analysis highlighted the involvement of the IL-17 and estrogen signaling pathways in response variability. Conclusions Radiomic signatures effectively predict NAC response patterns in breast cancer patients and are associated with specific survival outcomes. The CS pattern in nonpCR patients indicates better survival.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
wang完成签到,获得积分10
1秒前
书虫完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助10
1秒前
1秒前
2秒前
想吃烤鸭发布了新的文献求助10
2秒前
CAOHOU应助沉默冬卉采纳,获得10
2秒前
SciGPT应助xymy采纳,获得10
2秒前
lii应助水牛采纳,获得10
3秒前
小马发布了新的文献求助10
3秒前
3秒前
4秒前
4秒前
4秒前
俏皮小松鼠给俏皮小松鼠的求助进行了留言
5秒前
6秒前
小曾应助流白采纳,获得10
7秒前
7秒前
甜美怜蕾完成签到 ,获得积分10
7秒前
吉恩完成签到,获得积分20
8秒前
我劝告了风完成签到,获得积分10
9秒前
9秒前
yuzi完成签到,获得积分10
9秒前
tanrui完成签到,获得积分10
9秒前
郎梟发布了新的文献求助10
9秒前
YZ完成签到,获得积分10
10秒前
10秒前
RadiantYT发布了新的文献求助10
10秒前
cellulose完成签到,获得积分10
11秒前
小曾应助流白采纳,获得10
11秒前
丘比特应助A2QD采纳,获得10
11秒前
11秒前
xiaoshi完成签到,获得积分10
11秒前
up发布了新的文献求助10
12秒前
12秒前
问雁完成签到,获得积分10
13秒前
wh完成签到,获得积分10
13秒前
苹果摇伽完成签到,获得积分10
13秒前
yuzi发布了新的文献求助10
13秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987054
求助须知:如何正确求助?哪些是违规求助? 3529416
关于积分的说明 11244990
捐赠科研通 3267882
什么是DOI,文献DOI怎么找? 1803968
邀请新用户注册赠送积分活动 881257
科研通“疑难数据库(出版商)”最低求助积分说明 808650