阴极
铜
阳极
电积
材料科学
电解质
冶金
无机化学
化学工程
化学
电极
物理化学
工程类
作者
NULL AUTHOR_ID,Chu Cheng,NULL AUTHOR_ID,Haitao Liu,NULL AUTHOR_ID,Kexing Song
出处
期刊:Metals
[MDPI AG]
日期:2024-07-08
卷期号:14 (7): 799-799
摘要
As the grade of the copper concentrate decreases and its composition becomes increasingly complex, the silver content in anode plates cast after fire refining increases, leading to a higher silver content in the copper cathode during electrorefining and a substantial loss of precious metals. This study investigates the impact of 5-amino-1H tetrazole (5-AT) on reducing silver in copper cathodes during electrorefining with high silver content anode plates. 5-AT forms an “adsorption layer” on the anode surface, reacting with Ag+ released by the anode to form a precipitate and prevent Ag+ from entering the electrolyte. This process agglomerates fine Ag-Se compounds and AgCl particles, creating larger anode slime particles that settle quickly, thus inhibiting fine silver-containing particles from adhering to the cathode. Furthermore, 5-AT adsorbs on the cathode, binding with Cu+ and promoting the Cu2+ electrodeposition process while inhibiting Ag+ electrodeposition. This facilitates uniform copper cathode grain growth and reduces inclusions in the copper cathode. The grain size of the copper cathode initially decreases and then increases as the concentration of 5-AT increases. At an optimal 5-AT concentration of 15 mg/L, the Ag content in the copper cathode decreased from 6.9 ppm to 4.7 ppm, indicating the potential efficacy of 5-AT in improving the quality of electrorefined copper.
科研通智能强力驱动
Strongly Powered by AbleSci AI