Deciphering the role of cuproptosis‐related lncRNAs in shaping the lung cancer immune microenvironment: A comprehensive prognostic model

肺癌 免疫系统 生物 生存分析 计算生物学 肿瘤科 肿瘤微环境 免疫疗法 基因 生物信息学 内科学 医学 免疫学 遗传学
作者
NULL AUTHOR_ID,NULL AUTHOR_ID,Zongqi Zhang,NULL AUTHOR_ID,Zhengbin Zhang,NULL AUTHOR_ID,Jianjie Wang,NULL AUTHOR_ID,NULL AUTHOR_ID,Meilan Zhou
出处
期刊:Journal of Cellular and Molecular Medicine [Wiley]
卷期号:28 (13)
标识
DOI:10.1111/jcmm.18519
摘要

Abstract Cuproptosis plays an important role in cancer, but its role in lung cancer remains unknown. Transcriptional profiles, clinical details and mutation data were acquired from the Cancer Genome Atlas database through a variety of methods. The analysis of this publicly available data was comprehensively performed using R software along with its relevant packages, ensuring a thorough examination of the information. In this study, we conducted a detailed analysis of cuproptosis‐related genes and lncRNA co‐expression, identifying 129 relevant lncRNAs and establishing a prognostic model with four key lncRNAs (LINC00996, RPARP‐AS1, SND1‐IT1, TMPO‐AS1). Utilizing data from TCGA and GEO databases, the model effectively categorized patients into high‐ and low‐risk groups, showing significant survival differences. Correlation analysis highlighted specific relationships between individual lncRNAs and cuproptosis genes. Our survival analysis indicated a higher survival rate in the low‐risk group across various cohorts. Additionally, the model's predictive accuracy was confirmed through independent prognostic analysis and ROC curve evaluations. Functional enrichment analysis revealed distinct biological pathways and immune functions between risk groups. Tumour mutation load analysis differentiated high‐ and low‐risk groups by their mutation profiles. Drug sensitivity analysis and immune infiltration studies using the CIBERSORT algorithm further elucidated the potential treatment responses in different risk groups. This comprehensive evaluation underscores the significance of lncRNAs in cuproptosis and their potential as biomarkers for lung cancer prognosis and immune microenvironment.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
鱼仔发布了新的文献求助10
刚刚
chenshen完成签到,获得积分10
刚刚
茕穹完成签到,获得积分10
1秒前
1秒前
Kru完成签到,获得积分20
1秒前
黑熊安巴尼完成签到,获得积分20
2秒前
chenchenchen完成签到,获得积分20
2秒前
马紫婷完成签到 ,获得积分10
2秒前
2秒前
2秒前
李李发布了新的文献求助10
2秒前
chenshen发布了新的文献求助10
3秒前
cccui发布了新的文献求助10
4秒前
李健应助意义采纳,获得10
4秒前
Yamila完成签到,获得积分10
4秒前
4秒前
miemie发布了新的文献求助10
4秒前
4秒前
Ciil完成签到,获得积分10
5秒前
5秒前
笑南发布了新的文献求助10
5秒前
yehata发布了新的文献求助30
6秒前
积极的紫完成签到,获得积分10
6秒前
6秒前
loong发布了新的文献求助10
6秒前
7秒前
7秒前
7秒前
ROGER发布了新的文献求助10
7秒前
8秒前
mozhi发布了新的文献求助10
8秒前
舒适的藏花完成签到 ,获得积分10
9秒前
Natasha发布了新的文献求助10
10秒前
11秒前
12秒前
汉堡包应助渊思采纳,获得10
12秒前
可爱的函函应助PDY采纳,获得10
13秒前
浩浩发布了新的文献求助10
13秒前
FashionBoy应助life采纳,获得10
13秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3150106
求助须知:如何正确求助?哪些是违规求助? 2801196
关于积分的说明 7843534
捐赠科研通 2458660
什么是DOI,文献DOI怎么找? 1308585
科研通“疑难数据库(出版商)”最低求助积分说明 628556
版权声明 601721