Development and evaluation of interpretable machine learning regressors for predicting femoral neck bone mineral density in elderly men using NHANES data

股骨颈 骨矿物 全国健康与营养检查调查 Lasso(编程语言) 医学 特征选择 统计 人工智能 人口 机器学习 计算机科学 内科学 数学 环境卫生 骨质疏松症 万维网
作者
He Wenhua,Song Chen,Xinxin Fu,Li-Cong Xu,Jun Xie,Jinxing Wan
标识
DOI:10.17305/bb.2024.10725
摘要

Osteoporotic femoral neck fractures (OFNFs) pose a significant orthopedic challenge in the elderly population, accounting for up to 40% of all osteoporotic fractures and leading to considerable health deterioration and increased mortality. In addressing the critical need for early identification of osteoporosis through routine screening of femoral neck bone mineral density (FNBMD), this study developed a user-friendly prediction model aimed at men aged 50 years and older, a demographic often overlooked in osteoporosis screening. Utilizing data from the National Health and Nutrition Examination Survey (NHANES), the study involved outlier detection and handling, missing value imputation via the K nearest neighbor (KNN) algorithm, and data normalization and encoding. The dataset was split into training and test sets with a 7:3 ratio, followed by feature screening through the least absolute shrinkage and selection operator (LASSO) and the Boruta algorithm. Eight different machine learning algorithms were then employed to construct predictive models, with their performance evaluated through a comprehensive metric suite. The random forest regressor (RFR) emerged as the most effective model, characterized by key predictors such as age, body mass index (BMI), poverty income ratio (PIR), serum calcium, and race, achieving a coefficient of determination (R²) of 0.218 and maintaining robustness in sensitivity analyses. Notably, excluding race from the model resulted in sustained high performance, underscoring the model’s adaptability. Interpretations using Shapley additive explanations (SHAP) highlighted the influence of each feature on FNBMD. These findings indicate that our predictive model effectively aids in the early detection of osteoporosis, potentially reducing the incidence of OFNFs in this high-risk population.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
luoluo完成签到,获得积分10
刚刚
会飞的yu完成签到,获得积分10
1秒前
1秒前
lxh913发布了新的文献求助200
2秒前
yangL发布了新的文献求助10
2秒前
开心浩阑应助ChenCC采纳,获得20
3秒前
悠游书浪完成签到,获得积分10
3秒前
阿斯顿撒大学完成签到,获得积分10
3秒前
4秒前
量子星尘发布了新的文献求助10
4秒前
小蜜峰儿完成签到 ,获得积分10
5秒前
5476完成签到,获得积分10
5秒前
5秒前
5秒前
精灵半岛发布了新的文献求助10
6秒前
6秒前
7秒前
会飞的yu发布了新的文献求助10
7秒前
chourllh完成签到,获得积分10
7秒前
8秒前
好好念书完成签到,获得积分20
8秒前
颜靖仇发布了新的文献求助10
9秒前
10秒前
unite 小丘发布了新的文献求助10
11秒前
风中的怜阳完成签到,获得积分10
11秒前
11秒前
bgt完成签到 ,获得积分10
12秒前
12秒前
精灵半岛完成签到,获得积分10
13秒前
风雨琳琅完成签到,获得积分10
13秒前
顺利毕业耶耶耶完成签到,获得积分10
13秒前
今后应助javalin采纳,获得10
13秒前
13秒前
15秒前
led完成签到,获得积分10
15秒前
15秒前
鱼生发布了新的文献求助10
16秒前
王军鹏发布了新的文献求助80
16秒前
科演小能手完成签到,获得积分10
17秒前
Lucas应助健壮丝袜采纳,获得10
17秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951219
求助须知:如何正确求助?哪些是违规求助? 3496615
关于积分的说明 11083276
捐赠科研通 3227034
什么是DOI,文献DOI怎么找? 1784184
邀请新用户注册赠送积分活动 868252
科研通“疑难数据库(出版商)”最低求助积分说明 801091