Development and evaluation of interpretable machine learning regressors for predicting femoral neck bone mineral density in elderly men using NHANES data

股骨颈 骨矿物 全国健康与营养检查调查 Lasso(编程语言) 医学 特征选择 统计 人工智能 人口 机器学习 计算机科学 内科学 数学 环境卫生 骨质疏松症 万维网
作者
He Wenhua,Song Chen,Xinxin Fu,Li-Cong Xu,Jun Xie,Jinxing Wan
标识
DOI:10.17305/bb.2024.10725
摘要

Osteoporotic femoral neck fractures (OFNFs) pose a significant orthopedic challenge in the elderly population, accounting for up to 40% of all osteoporotic fractures and leading to considerable health deterioration and increased mortality. In addressing the critical need for early identification of osteoporosis through routine screening of femoral neck bone mineral density (FNBMD), this study developed a user-friendly prediction model aimed at men aged 50 years and older, a demographic often overlooked in osteoporosis screening. Utilizing data from the National Health and Nutrition Examination Survey (NHANES), the study involved outlier detection and handling, missing value imputation via the K nearest neighbor (KNN) algorithm, and data normalization and encoding. The dataset was split into training and test sets with a 7:3 ratio, followed by feature screening through the least absolute shrinkage and selection operator (LASSO) and the Boruta algorithm. Eight different machine learning algorithms were then employed to construct predictive models, with their performance evaluated through a comprehensive metric suite. The random forest regressor (RFR) emerged as the most effective model, characterized by key predictors such as age, body mass index (BMI), poverty income ratio (PIR), serum calcium, and race, achieving a coefficient of determination (R²) of 0.218 and maintaining robustness in sensitivity analyses. Notably, excluding race from the model resulted in sustained high performance, underscoring the model’s adaptability. Interpretations using Shapley additive explanations (SHAP) highlighted the influence of each feature on FNBMD. These findings indicate that our predictive model effectively aids in the early detection of osteoporosis, potentially reducing the incidence of OFNFs in this high-risk population.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
慕青应助Fengliguantou采纳,获得10
3秒前
Demon完成签到,获得积分10
3秒前
Bluebulu完成签到 ,获得积分10
3秒前
今后应助科研通管家采纳,获得10
5秒前
orixero应助科研通管家采纳,获得10
5秒前
华仔应助科研通管家采纳,获得10
5秒前
搜集达人应助科研通管家采纳,获得10
5秒前
5秒前
完美世界应助科研通管家采纳,获得10
5秒前
研友_VZG7GZ应助科研通管家采纳,获得10
5秒前
所所应助科研通管家采纳,获得10
5秒前
完美世界应助科研通管家采纳,获得10
5秒前
萧水白应助科研通管家采纳,获得10
5秒前
英姑应助科研通管家采纳,获得10
5秒前
小蘑菇应助科研通管家采纳,获得10
5秒前
6秒前
6秒前
6秒前
天天快乐应助阳和启蛰采纳,获得10
8秒前
8秒前
戚雅柔完成签到 ,获得积分10
8秒前
11秒前
单薄俊驰完成签到,获得积分10
11秒前
那个笨笨完成签到,获得积分10
11秒前
晚湖完成签到,获得积分10
12秒前
whisper发布了新的文献求助10
12秒前
14秒前
14秒前
胡思乱想发布了新的文献求助10
14秒前
胖一达完成签到 ,获得积分10
15秒前
15秒前
bear发布了新的文献求助10
18秒前
涂楚捷完成签到,获得积分10
18秒前
椒盐鲨鱼皮发布了新的文献求助100
18秒前
罗又柔应助栗子鱼采纳,获得10
19秒前
科研通AI2S应助whisper采纳,获得10
20秒前
xiaoshu发布了新的文献求助10
20秒前
22秒前
田様应助谦让的小姜采纳,获得10
23秒前
王超远发布了新的文献求助10
24秒前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137994
求助须知:如何正确求助?哪些是违规求助? 2788986
关于积分的说明 7789404
捐赠科研通 2445432
什么是DOI,文献DOI怎么找? 1300328
科研通“疑难数据库(出版商)”最低求助积分说明 625900
版权声明 601046