Development and evaluation of interpretable machine learning regressors for predicting femoral neck bone mineral density in elderly men using NHANES data

股骨颈 骨矿物 全国健康与营养检查调查 Lasso(编程语言) 医学 特征选择 统计 人工智能 人口 机器学习 计算机科学 内科学 数学 环境卫生 骨质疏松症 万维网
作者
He Wenhua,Song Chen,Xinxin Fu,Li-Cong Xu,Jun Xie,Jinxing Wan
标识
DOI:10.17305/bb.2024.10725
摘要

Osteoporotic femoral neck fractures (OFNFs) pose a significant orthopedic challenge in the elderly population, accounting for up to 40% of all osteoporotic fractures and leading to considerable health deterioration and increased mortality. In addressing the critical need for early identification of osteoporosis through routine screening of femoral neck bone mineral density (FNBMD), this study developed a user-friendly prediction model aimed at men aged 50 years and older, a demographic often overlooked in osteoporosis screening. Utilizing data from the National Health and Nutrition Examination Survey (NHANES), the study involved outlier detection and handling, missing value imputation via the K nearest neighbor (KNN) algorithm, and data normalization and encoding. The dataset was split into training and test sets with a 7:3 ratio, followed by feature screening through the least absolute shrinkage and selection operator (LASSO) and the Boruta algorithm. Eight different machine learning algorithms were then employed to construct predictive models, with their performance evaluated through a comprehensive metric suite. The random forest regressor (RFR) emerged as the most effective model, characterized by key predictors such as age, body mass index (BMI), poverty income ratio (PIR), serum calcium, and race, achieving a coefficient of determination (R²) of 0.218 and maintaining robustness in sensitivity analyses. Notably, excluding race from the model resulted in sustained high performance, underscoring the model’s adaptability. Interpretations using Shapley additive explanations (SHAP) highlighted the influence of each feature on FNBMD. These findings indicate that our predictive model effectively aids in the early detection of osteoporosis, potentially reducing the incidence of OFNFs in this high-risk population.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷波er应助无情的白桃采纳,获得10
刚刚
科研通AI5应助小香草采纳,获得10
刚刚
星star完成签到 ,获得积分10
刚刚
1秒前
1秒前
调皮的千万完成签到,获得积分10
1秒前
狂野觅云发布了新的文献求助10
1秒前
1秒前
哈哈哈发布了新的文献求助10
1秒前
小星完成签到,获得积分10
1秒前
cc发布了新的文献求助10
2秒前
小石发布了新的文献求助10
2秒前
阿宝完成签到,获得积分10
2秒前
lsx完成签到 ,获得积分10
2秒前
Owen应助Dream采纳,获得30
2秒前
3秒前
www完成签到,获得积分20
3秒前
受伤的大米完成签到,获得积分10
3秒前
ssgecust完成签到,获得积分10
3秒前
科研通AI5应助Passion采纳,获得10
4秒前
MXJ完成签到,获得积分10
5秒前
科研通AI5应助热心的早晨采纳,获得10
5秒前
txy完成签到,获得积分10
5秒前
5秒前
GCY完成签到,获得积分10
5秒前
cc完成签到,获得积分10
5秒前
han完成签到,获得积分10
6秒前
111完成签到,获得积分20
6秒前
通~发布了新的文献求助10
7秒前
hhh关闭了hhh文献求助
7秒前
章丘吴彦祖完成签到,获得积分20
7秒前
8秒前
研友_nv2r4n完成签到,获得积分10
8秒前
狂野觅云完成签到,获得积分10
8秒前
8秒前
小石完成签到,获得积分10
9秒前
独特的飞烟完成签到,获得积分10
9秒前
9秒前
科研猪完成签到,获得积分10
10秒前
大个应助qqwxp采纳,获得10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740