Wavelet transforms for feature engineering in EEG data processing: An application on Schizophrenia

阿达布思 支持向量机 离散小波变换 计算机科学 随机森林 特征(语言学) 小波 人工智能 模式识别(心理学) 特征提取 决策树 小波变换 机器学习 语言学 哲学
作者
Bethany Gosala,Pappu Dindayal Kapgate,Priyanka Jain,Rameshwar Nath Chaurasia,Manjari Gupta
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:85: 104811-104811 被引量:28
标识
DOI:10.1016/j.bspc.2023.104811
摘要

Applying Artificial Intelligence (AI) in the healthcare domain is getting benefitted day by day with the advancement of approaches, one of them being Bio-Signal analysis. In Bio-signals, efficient feature engineering and feature extraction (FE) is necessary for optimal results. Features can be extracted from different methods by Time, Frequency, and Time-frequency domains. Time-frequency domain features are the most advanced and perform well for most AI-based signal analysis problems. We introduced the application of Wavelet Scattering Transform (WST) to neuro-disorder classification and provided a comparative study with Continuous Wavelet Transform (CWT) and Discrete Wavelet Transform (DWT) for schizophrenia disease classification. We are one of the first to apply WST to EEG data for classifying neurological disorders. We have also extracted 12 statistical features from the data before sending them to classifiers for classification. We built six Machine Learning (ML) algorithms from two categories core/traditional ML (Logistic regression and Support vector machine) and Ensemble Learning (EL) (Decision Trees, Random Forest, AdaBoost, and Gradient Boost). In total we have conducted 18 experiments, our study found that ensembling methods performed better when features are extracted from CWT and DWT. At the same time, traditional ML methods performed better than EL methods when features are extracted from WST. Overall SVM performed better, but the best results are attained by Decision trees which are; 97.98%; 98.2%;97.72%; 95.94; values of accuracy, sensitivity, specificity, and Kappa score respectively, and execution time of 48.04 s; our proposed method performed better than the reported state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小蘑菇应助流星采纳,获得10
1秒前
ccm发布了新的文献求助10
2秒前
liuhll完成签到,获得积分20
2秒前
pluto应助独特苡采纳,获得30
3秒前
赘婿应助科研小崽采纳,获得10
4秒前
lemon5659068发布了新的文献求助10
5秒前
zy完成签到,获得积分10
5秒前
6秒前
7秒前
希希完成签到 ,获得积分10
7秒前
8秒前
细腻无春完成签到,获得积分20
8秒前
Aloha发布了新的文献求助10
9秒前
9秒前
务实可愁发布了新的文献求助10
9秒前
11秒前
12秒前
Tan3837发布了新的文献求助10
12秒前
流星发布了新的文献求助10
14秒前
15秒前
盛夏如花发布了新的文献求助10
16秒前
Jcm完成签到,获得积分10
16秒前
务实可愁完成签到,获得积分20
18秒前
CipherSage应助舒适的平蓝采纳,获得10
18秒前
phil发布了新的文献求助10
19秒前
情怀应助庄小因采纳,获得10
19秒前
Singularity应助Cheryl采纳,获得10
20秒前
21秒前
传奇3应助铎幸福采纳,获得10
21秒前
饽饽饽饽发布了新的文献求助10
22秒前
22秒前
22秒前
大模型应助怕孤独的盼波采纳,获得10
23秒前
24秒前
赘婿应助Tan3837采纳,获得10
24秒前
24秒前
P.c完成签到,获得积分10
24秒前
聆琳完成签到 ,获得积分10
26秒前
27秒前
海的声音发布了新的文献求助10
27秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Devlopment of GaN Resonant Cavity LEDs 666
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3455209
求助须知:如何正确求助?哪些是违规求助? 3050548
关于积分的说明 9021471
捐赠科研通 2739114
什么是DOI,文献DOI怎么找? 1502452
科研通“疑难数据库(出版商)”最低求助积分说明 694529
邀请新用户注册赠送积分活动 693302