亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Multi-objective evolving long–short term memory networks with attention for network intrusion detection

计算机科学 入侵检测系统 互联网 人工智能 数据挖掘 网络安全 图层(电子) 期限(时间) 特征(语言学) 短时记忆 机器学习 人工神经网络 计算机安全 循环神经网络 量子力学 物理 万维网 哲学 有机化学 语言学 化学
作者
Wenhong Wei,Yi Chen,Qiuzhen Lin,Junkai Ji,Ka‐Chun Wong,Jianqiang Li
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:139: 110216-110216 被引量:8
标识
DOI:10.1016/j.asoc.2023.110216
摘要

Cyber security has received increasing attention, as people use more Internet applications in their lives and worry about the security of their personal data on the Internet. Intrusion Detection Systems (IDSs) are critical security tools that can detect and respond to intrusions. In recent years, Deep Learning (DL) techniques have gained popularity in IDS design due to their promising performance in terms of detection accuracy. However, the design of DL architectures usually requires professional knowledge and significantly impacts the performance of the DL model. Furthermore, the existence of a small ratio of abnormal traffic in vast network traffic leads to a serious imbalanced data problem, which negatively affects the performance of the DL model in detecting minority attack classes. To alleviate these problems, this paper proposes a multi-objective evolutionary DL model (called EvoBMF) to detect network intrusion behaviors. The model incorporates bidirectional Long–short Term Memory (BiLSTM) for preliminary feature extraction, Multi-Head Attention (MHA) for further capturing features and global information of the network traffic, and Full-Connected Layer (FCL) module to perform final classification. To deal with the challenge of manually tuning the parameters of the DL model when tackling different tasks, the parameters of the EvoBMF model are first encoded as the chromosome of the Multi-objective Evolutionary Algorithm (MOEA), which aims to optimize the two conflicting objectives (complexity and classification ability) of the model. A state-of-the-art MOEA (MOEA/D-DRA) is then used to optimize the above two objectives, aiming to obtain the optimal architecture for EvoBMF, which can be easily deployed in cloud computing scenarios to detect and respond to network intrusions. Additionally, to alleviate the severe imbalance in routine network traffic, the synthetic minority over-sampling technique is introduced to generate representative samples of minority classes to improve the overall performance of the model. At last, the experimental results conducted on two popular datasets (UNSW-NB15 and CIC-IDS 2018) have demonstrated that the proposed EvoBMF model can provide superior performance for intrusion detection when compared to some state-of-the-art IDSs.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mouxq发布了新的文献求助10
5秒前
路漫漫其修远兮完成签到 ,获得积分10
1分钟前
特特雷珀萨努完成签到 ,获得积分10
1分钟前
阿藏完成签到,获得积分10
1分钟前
饼干吃土豆完成签到,获得积分10
1分钟前
film完成签到 ,获得积分10
1分钟前
2分钟前
阿藏发布了新的文献求助10
2分钟前
研友_VZG7GZ应助庄严采纳,获得10
2分钟前
2分钟前
2分钟前
mouxq发布了新的文献求助10
2分钟前
叶千山完成签到 ,获得积分10
3分钟前
3分钟前
庄严发布了新的文献求助10
3分钟前
烟花应助庄严采纳,获得10
3分钟前
陈鹿华完成签到 ,获得积分10
4分钟前
FashionBoy应助科研通管家采纳,获得10
4分钟前
4分钟前
mouxq发布了新的文献求助10
4分钟前
4分钟前
庄严发布了新的文献求助10
4分钟前
ll完成签到,获得积分10
5分钟前
5分钟前
ll发布了新的文献求助10
5分钟前
5分钟前
缥缈的飞柏完成签到,获得积分20
5分钟前
5分钟前
CipherSage应助缥缈的飞柏采纳,获得10
5分钟前
mouxq发布了新的文献求助10
7分钟前
annie完成签到,获得积分10
7分钟前
虚幻的楼房完成签到 ,获得积分10
7分钟前
愉快的尔琴完成签到,获得积分10
7分钟前
8分钟前
8分钟前
9分钟前
9分钟前
mouxq发布了新的文献求助10
9分钟前
9分钟前
稳重的盼秋完成签到,获得积分10
9分钟前
高分求助中
Operational Bulk Evaporation Duct Model for MORIAH Version 1.2 1200
Signals, Systems, and Signal Processing 880
Yangtze Reminiscences. Some Notes And Recollections Of Service With The China Navigation Company Ltd., 1925-1939 800
Common Foundations of American and East Asian Modernisation: From Alexander Hamilton to Junichero Koizumi 600
Discrete-Time Signals and Systems 510
Industrial Organic Chemistry, 5th Edition 400
Multiple Regression and Beyond An Introduction to Multiple Regression and Structural Equation Modeling 4th Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5845535
求助须知:如何正确求助?哪些是违规求助? 6203951
关于积分的说明 15616502
捐赠科研通 4962328
什么是DOI,文献DOI怎么找? 2675402
邀请新用户注册赠送积分活动 1620134
关于科研通互助平台的介绍 1575475