亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Multi-objective evolving long–short term memory networks with attention for network intrusion detection

计算机科学 入侵检测系统 互联网 人工智能 数据挖掘 网络安全 图层(电子) 期限(时间) 特征(语言学) 短时记忆 机器学习 人工神经网络 计算机安全 循环神经网络 量子力学 物理 万维网 哲学 有机化学 语言学 化学
作者
Wenhong Wei,Yi Chen,Qiuzhen Lin,Junkai Ji,Ka‐Chun Wong,Jianqiang Li
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:139: 110216-110216 被引量:8
标识
DOI:10.1016/j.asoc.2023.110216
摘要

Cyber security has received increasing attention, as people use more Internet applications in their lives and worry about the security of their personal data on the Internet. Intrusion Detection Systems (IDSs) are critical security tools that can detect and respond to intrusions. In recent years, Deep Learning (DL) techniques have gained popularity in IDS design due to their promising performance in terms of detection accuracy. However, the design of DL architectures usually requires professional knowledge and significantly impacts the performance of the DL model. Furthermore, the existence of a small ratio of abnormal traffic in vast network traffic leads to a serious imbalanced data problem, which negatively affects the performance of the DL model in detecting minority attack classes. To alleviate these problems, this paper proposes a multi-objective evolutionary DL model (called EvoBMF) to detect network intrusion behaviors. The model incorporates bidirectional Long–short Term Memory (BiLSTM) for preliminary feature extraction, Multi-Head Attention (MHA) for further capturing features and global information of the network traffic, and Full-Connected Layer (FCL) module to perform final classification. To deal with the challenge of manually tuning the parameters of the DL model when tackling different tasks, the parameters of the EvoBMF model are first encoded as the chromosome of the Multi-objective Evolutionary Algorithm (MOEA), which aims to optimize the two conflicting objectives (complexity and classification ability) of the model. A state-of-the-art MOEA (MOEA/D-DRA) is then used to optimize the above two objectives, aiming to obtain the optimal architecture for EvoBMF, which can be easily deployed in cloud computing scenarios to detect and respond to network intrusions. Additionally, to alleviate the severe imbalance in routine network traffic, the synthetic minority over-sampling technique is introduced to generate representative samples of minority classes to improve the overall performance of the model. At last, the experimental results conducted on two popular datasets (UNSW-NB15 and CIC-IDS 2018) have demonstrated that the proposed EvoBMF model can provide superior performance for intrusion detection when compared to some state-of-the-art IDSs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1分钟前
1分钟前
Artin发布了新的文献求助200
1分钟前
充电宝应助dongling采纳,获得10
1分钟前
spark810发布了新的文献求助10
1分钟前
spark810发布了新的文献求助10
1分钟前
2分钟前
spark810发布了新的文献求助10
2分钟前
spark810发布了新的文献求助10
2分钟前
2分钟前
Artin完成签到,获得积分10
3分钟前
spark810发布了新的文献求助10
3分钟前
3分钟前
高高雁枫完成签到 ,获得积分10
3分钟前
夏爽2023发布了新的文献求助10
3分钟前
和敬清寂发布了新的文献求助10
4分钟前
5分钟前
香蕉觅云应助和敬清寂采纳,获得10
5分钟前
5分钟前
和敬清寂发布了新的文献求助10
5分钟前
和敬清寂完成签到,获得积分20
5分钟前
6分钟前
123发布了新的文献求助10
6分钟前
666完成签到 ,获得积分10
6分钟前
123完成签到 ,获得积分20
6分钟前
vegs发布了新的文献求助10
6分钟前
研友_VZG7GZ应助123采纳,获得10
7分钟前
vegs完成签到,获得积分20
7分钟前
老宇126完成签到,获得积分10
7分钟前
7分钟前
木子发布了新的文献求助10
7分钟前
木子完成签到,获得积分20
8分钟前
8分钟前
生言生语完成签到,获得积分10
9分钟前
一辉完成签到 ,获得积分10
9分钟前
木子关注了科研通微信公众号
9分钟前
mengyuhuan完成签到 ,获得积分0
10分钟前
10分钟前
烟花应助干重采纳,获得10
10分钟前
10分钟前
高分求助中
The ACS Guide to Scholarly Communication 2500
Sustainability in Tides Chemistry 2000
Pharmacogenomics: Applications to Patient Care, Third Edition 1000
Studien zur Ideengeschichte der Gesetzgebung 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Threaded Harmony: A Sustainable Approach to Fashion 810
Genera Insectorum: Mantodea, Fam. Mantidæ, Subfam. Hymenopodinæ (Classic Reprint) 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3085446
求助须知:如何正确求助?哪些是违规求助? 2738298
关于积分的说明 7548854
捐赠科研通 2387919
什么是DOI,文献DOI怎么找? 1266219
科研通“疑难数据库(出版商)”最低求助积分说明 613332
版权声明 598584