Multi-objective evolving long–short term memory networks with attention for network intrusion detection

计算机科学 入侵检测系统 互联网 人工智能 数据挖掘 网络安全 图层(电子) 期限(时间) 特征(语言学) 短时记忆 机器学习 人工神经网络 计算机安全 循环神经网络 量子力学 物理 万维网 哲学 有机化学 语言学 化学
作者
Wenhong Wei,Yi Chen,Qiuzhen Lin,Junkai Ji,Ka‐Chun Wong,Jianqiang Li
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:139: 110216-110216 被引量:8
标识
DOI:10.1016/j.asoc.2023.110216
摘要

Cyber security has received increasing attention, as people use more Internet applications in their lives and worry about the security of their personal data on the Internet. Intrusion Detection Systems (IDSs) are critical security tools that can detect and respond to intrusions. In recent years, Deep Learning (DL) techniques have gained popularity in IDS design due to their promising performance in terms of detection accuracy. However, the design of DL architectures usually requires professional knowledge and significantly impacts the performance of the DL model. Furthermore, the existence of a small ratio of abnormal traffic in vast network traffic leads to a serious imbalanced data problem, which negatively affects the performance of the DL model in detecting minority attack classes. To alleviate these problems, this paper proposes a multi-objective evolutionary DL model (called EvoBMF) to detect network intrusion behaviors. The model incorporates bidirectional Long–short Term Memory (BiLSTM) for preliminary feature extraction, Multi-Head Attention (MHA) for further capturing features and global information of the network traffic, and Full-Connected Layer (FCL) module to perform final classification. To deal with the challenge of manually tuning the parameters of the DL model when tackling different tasks, the parameters of the EvoBMF model are first encoded as the chromosome of the Multi-objective Evolutionary Algorithm (MOEA), which aims to optimize the two conflicting objectives (complexity and classification ability) of the model. A state-of-the-art MOEA (MOEA/D-DRA) is then used to optimize the above two objectives, aiming to obtain the optimal architecture for EvoBMF, which can be easily deployed in cloud computing scenarios to detect and respond to network intrusions. Additionally, to alleviate the severe imbalance in routine network traffic, the synthetic minority over-sampling technique is introduced to generate representative samples of minority classes to improve the overall performance of the model. At last, the experimental results conducted on two popular datasets (UNSW-NB15 and CIC-IDS 2018) have demonstrated that the proposed EvoBMF model can provide superior performance for intrusion detection when compared to some state-of-the-art IDSs.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
waws完成签到,获得积分10
2秒前
3秒前
3秒前
3秒前
3秒前
睡觉大王完成签到 ,获得积分10
3秒前
全球发布了新的文献求助10
3秒前
4秒前
4秒前
zz发布了新的文献求助10
4秒前
刚睡醒发布了新的文献求助10
5秒前
7秒前
7秒前
qq799644972发布了新的文献求助30
8秒前
BHX完成签到,获得积分10
8秒前
愉快的凡发布了新的文献求助10
8秒前
lulala发布了新的文献求助10
9秒前
木木发布了新的文献求助10
9秒前
lightman完成签到,获得积分10
9秒前
Hello应助时尚的冰夏采纳,获得10
9秒前
11秒前
11秒前
yyryyrr发布了新的文献求助10
12秒前
量子星尘发布了新的文献求助10
13秒前
13秒前
BowieHuang应助YK采纳,获得10
13秒前
海盐气泡水完成签到 ,获得积分10
13秒前
14秒前
英姑应助oopp采纳,获得30
15秒前
15秒前
15秒前
WELL123完成签到,获得积分20
15秒前
16秒前
刁刁发布了新的文献求助10
16秒前
18秒前
111关注了科研通微信公众号
20秒前
kiki发布了新的文献求助10
20秒前
20秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Theoretical modelling of unbonded flexible pipe cross-sections 2000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Minimizing the Effects of Phase Quantization Errors in an Electronically Scanned Array 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5533498
求助须知:如何正确求助?哪些是违规求助? 4621711
关于积分的说明 14580035
捐赠科研通 4561794
什么是DOI,文献DOI怎么找? 2499622
邀请新用户注册赠送积分活动 1479350
关于科研通互助平台的介绍 1450588