Multi-objective evolving long–short term memory networks with attention for network intrusion detection

计算机科学 入侵检测系统 互联网 人工智能 数据挖掘 网络安全 图层(电子) 期限(时间) 特征(语言学) 短时记忆 机器学习 人工神经网络 计算机安全 循环神经网络 量子力学 物理 万维网 哲学 有机化学 语言学 化学
作者
Wenhong Wei,Yi Chen,Qiuzhen Lin,Junkai Ji,Ka‐Chun Wong,Jianqiang Li
出处
期刊:Applied Soft Computing [Elsevier BV]
卷期号:139: 110216-110216 被引量:8
标识
DOI:10.1016/j.asoc.2023.110216
摘要

Cyber security has received increasing attention, as people use more Internet applications in their lives and worry about the security of their personal data on the Internet. Intrusion Detection Systems (IDSs) are critical security tools that can detect and respond to intrusions. In recent years, Deep Learning (DL) techniques have gained popularity in IDS design due to their promising performance in terms of detection accuracy. However, the design of DL architectures usually requires professional knowledge and significantly impacts the performance of the DL model. Furthermore, the existence of a small ratio of abnormal traffic in vast network traffic leads to a serious imbalanced data problem, which negatively affects the performance of the DL model in detecting minority attack classes. To alleviate these problems, this paper proposes a multi-objective evolutionary DL model (called EvoBMF) to detect network intrusion behaviors. The model incorporates bidirectional Long–short Term Memory (BiLSTM) for preliminary feature extraction, Multi-Head Attention (MHA) for further capturing features and global information of the network traffic, and Full-Connected Layer (FCL) module to perform final classification. To deal with the challenge of manually tuning the parameters of the DL model when tackling different tasks, the parameters of the EvoBMF model are first encoded as the chromosome of the Multi-objective Evolutionary Algorithm (MOEA), which aims to optimize the two conflicting objectives (complexity and classification ability) of the model. A state-of-the-art MOEA (MOEA/D-DRA) is then used to optimize the above two objectives, aiming to obtain the optimal architecture for EvoBMF, which can be easily deployed in cloud computing scenarios to detect and respond to network intrusions. Additionally, to alleviate the severe imbalance in routine network traffic, the synthetic minority over-sampling technique is introduced to generate representative samples of minority classes to improve the overall performance of the model. At last, the experimental results conducted on two popular datasets (UNSW-NB15 and CIC-IDS 2018) have demonstrated that the proposed EvoBMF model can provide superior performance for intrusion detection when compared to some state-of-the-art IDSs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
斯文败类应助fr0zen采纳,获得10
2秒前
chy完成签到,获得积分10
2秒前
张冰驰发布了新的文献求助10
2秒前
万能图书馆应助wikn采纳,获得10
3秒前
5秒前
Catherine_Song完成签到,获得积分10
6秒前
zx关闭了zx文献求助
6秒前
朱春枝完成签到,获得积分10
6秒前
chao完成签到,获得积分10
6秒前
Ava应助Lzy采纳,获得10
7秒前
慕青应助活泼忆丹采纳,获得10
7秒前
9秒前
9秒前
孤檠完成签到,获得积分10
9秒前
aero完成签到 ,获得积分10
9秒前
9秒前
9秒前
深情安青应助曾无忧采纳,获得10
10秒前
大橙子完成签到,获得积分10
10秒前
11秒前
11秒前
张冰驰完成签到,获得积分10
12秒前
INFJ完成签到,获得积分10
12秒前
13秒前
June发布了新的文献求助10
14秒前
李爱国应助TS采纳,获得10
15秒前
子车茗应助guozizi采纳,获得30
15秒前
16秒前
16秒前
乐观帅哥完成签到 ,获得积分10
16秒前
充电宝应助xiyeqaq采纳,获得10
16秒前
17秒前
wyx完成签到,获得积分20
17秒前
充电宝应助左边向北采纳,获得10
18秒前
18秒前
19秒前
量子星尘发布了新的文献求助10
19秒前
ban完成签到,获得积分10
19秒前
20秒前
英姑应助123采纳,获得10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Weekly Somapacitan is Effective and Well-Tolerated in Children with Idiopathic Short Stature: Randomised Phase 3 Trial 600
Technical Report No. 22 (Revised 2025): Process Simulation for Aseptically Filled Products 500
“Now I Have My Own Key”: The Impact of Housing Stability on Recovery and Recidivism Reduction Using a Recovery Capital Framework 500
The Red Peril Explained: Every Man, Woman & Child Affected 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5016248
求助须知:如何正确求助?哪些是违规求助? 4256302
关于积分的说明 13264360
捐赠科研通 4060256
什么是DOI,文献DOI怎么找? 2220809
邀请新用户注册赠送积分活动 1230053
关于科研通互助平台的介绍 1152671