亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Artificial Intelligence based drone for early disease detection and precision pesticide management in cashew farming

无人机 计算机科学 标准化 精准农业 农业 农业工程 多样性(控制论) 人工智能 工程类 地理 生物 遗传学 考古 操作系统
作者
Manoj Kumar Rajagopal,Bala Murugan MS
出处
期刊:Cornell University - arXiv 被引量:4
标识
DOI:10.48550/arxiv.2303.08556
摘要

The use of unmanned aerial vehicles (UAV) is revolutionizing the agricultural industry. Cashews are grown by approximately 70% of small and marginal farmers, and the cashew industry plays a critical role in their economic development. To take timely counter measures against plant diseases and infections, it is imperative to monitor and detect diseases as early as possible and take suitable measures. Using UAVs, such as those that are equipped with artificial intelligence, can assist farmers by providing early detection of crop diseases and precision pesticide application. An edge computing paradigm of Artificial Intelligence is employed to process this image in order to make decisions with the least amount of latency possible. As a result of these decisions, the stage of infestation, the crops affected, the method of prevention of spreading the disease, and what type and amount of pesticides need to be applied can be determined. UAVs equipped with sensors detect disease patterns quickly and accurately over large areas. Combined with AI algorithms, these machines can analyse data from a variety of sources such as temperature, humidity, CO2 levels and soil composition. This allows them to recognize disease symptoms before they become visible. Early detection allows for more effective control strategies that can reduce costs caused by lost production due to infestations or crop failure. Using an end-to-end training architecture, mobileNetV2 determines how to classify anthracnose disease in cashew leaves. A standard PlantVillage dataset is used for performance evaluation and for standardization. Additionally, samples captured with a drone present a variety of image samples captured in a variety of conditions, which complicates the analysis. According to our analysis, we were able to identify the anthracnose with 95% accuracy and the healthy leaves with 99% accuracy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cytheria完成签到 ,获得积分10
4秒前
miniF完成签到,获得积分10
4秒前
7秒前
汪鸡毛完成签到 ,获得积分10
11秒前
瘦瘦发布了新的文献求助10
12秒前
16秒前
tutu完成签到,获得积分10
18秒前
18秒前
隐形曼青应助招水若离采纳,获得10
20秒前
姗姗发布了新的文献求助10
25秒前
26秒前
bryceeluo完成签到,获得积分10
30秒前
可口可乐发布了新的文献求助10
31秒前
姗姗完成签到,获得积分10
36秒前
38秒前
39秒前
奋斗人雄完成签到,获得积分10
43秒前
52秒前
yuuu完成签到 ,获得积分10
1分钟前
哆啦A梦完成签到 ,获得积分10
1分钟前
1分钟前
冰美式发布了新的文献求助10
1分钟前
1分钟前
1分钟前
NexusExplorer应助miyavi采纳,获得30
1分钟前
华仔应助这橘不甜采纳,获得10
1分钟前
哎呦天松发布了新的文献求助10
1分钟前
莉莉斯完成签到 ,获得积分10
1分钟前
小全发布了新的文献求助10
1分钟前
1分钟前
1分钟前
寻道图强应助科研通管家采纳,获得30
1分钟前
深情安青应助科研通管家采纳,获得10
1分钟前
tyk发布了新的文献求助30
1分钟前
招水若离发布了新的文献求助10
1分钟前
小全完成签到,获得积分10
1分钟前
2分钟前
哎呦天松完成签到,获得积分10
2分钟前
Albert完成签到,获得积分10
2分钟前
招水若离完成签到,获得积分10
2分钟前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Very-high-order BVD Schemes Using β-variable THINC Method 850
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3248713
求助须知:如何正确求助?哪些是违规求助? 2892145
关于积分的说明 8270068
捐赠科研通 2560260
什么是DOI,文献DOI怎么找? 1388965
科研通“疑难数据库(出版商)”最低求助积分说明 650927
邀请新用户注册赠送积分活动 627823