Framingham risk score conventional risk factors are potent to predict all-cause mortality using machine learning algorithms: a population-based prospective cohort study over 40 years in China

弗雷明翰风险评分 机器学习 逻辑回归 接收机工作特性 置信区间 支持向量机 医学 随机森林 队列 人工智能 预测建模 前瞻性队列研究 人口 算法 队列研究 计算机科学 内科学 疾病 环境卫生
作者
Qianqian Huang,Tianshu Zeng,Jiaoyue Zhang,Jie Min,Juan Zheng,Shenghua Tian,Hantao Huang,XiaoHuan Liu,Hao Zhang,Ping Wang,Xiang Hu,Lulu Chen
出处
期刊:Journal of Investigative Medicine [BMJ]
卷期号:71 (6): 586-590
标识
DOI:10.1177/10815589231169689
摘要

Predicting all-cause mortality using available or conveniently modifiable risk factors is potentially crucial in reducing deaths precisely and efficiently. Framingham risk score (FRS) is widely used in predicting cardiovascular diseases, and its conventional risk factors are closely pertinent to deaths. Machine learning is increasingly considered to improve the predicting performances by developing predictive models. We aimed to develop the all-cause mortality predictive models using five machine learning (ML) algorithms (decision trees, random forest, support vector machine (SVM), XgBoost, and logistic regression) and determine whether FRS conventional risk factors are sufficient for predicting all-cause mortality in individuals over 40 years. Our data were obtained from a 10-year population-based prospective cohort study in China, including 9143 individuals over 40 years in 2011, and 6879 individuals followed-up in 2021. The all-cause mortality prediction models were developed using five ML algorithms by introducing all features available (182 items) or FRS conventional risk factors. The area under the receiver operating characteristic curve (AUC) was used to evaluate the performance of the predictive models. The AUC and 95% confidence interval of the all-cause mortality prediction models developed by FRS conventional risk factors using five ML algorithms were 0.75 (0.726–0.772), 0.78 (0.755–0.799), 0.75 (0.731–0.777), 0.77 (0.747–0.792), and 0.78 (0.754–0.798), respectively, which is close to the AUC values of models established by all features (0.79 (0.769–0.812), 0.83 (0.807–0.848), 0.78 (0.753–0.798), 0.82 (0.796–0.838), and 0.85 (0.826–0.866), respectively). Therefore, we tentatively put forward that FRS conventional risk factors were potent to predict all-cause mortality using machine learning algorithms in the population over 40 years.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
78910完成签到,获得积分10
刚刚
任我行完成签到,获得积分10
1秒前
飞云发布了新的文献求助10
1秒前
一石二鸟应助...采纳,获得10
1秒前
1秒前
神勇访云完成签到,获得积分10
2秒前
完美世界应助张土豆采纳,获得10
3秒前
FB完成签到,获得积分10
4秒前
FashionBoy应助HHTTWG采纳,获得10
4秒前
DoLaso完成签到,获得积分10
4秒前
HAI发布了新的文献求助20
5秒前
5秒前
春夏秋冬发布了新的文献求助10
7秒前
潜放完成签到,获得积分10
7秒前
7秒前
稻草人完成签到 ,获得积分10
7秒前
重要的马里奥完成签到 ,获得积分10
7秒前
多喝水完成签到,获得积分10
8秒前
JamesPei应助damn采纳,获得10
8秒前
9秒前
junjieLIU完成签到,获得积分10
10秒前
10秒前
方安完成签到,获得积分20
10秒前
搜集达人应助苹果酸奶采纳,获得10
10秒前
一石二鸟应助农学博士后采纳,获得10
11秒前
11秒前
平淡忻完成签到,获得积分20
11秒前
00完成签到,获得积分10
11秒前
xjcy应助炙热的夜雪采纳,获得10
15秒前
kran完成签到,获得积分10
15秒前
15秒前
15秒前
卡卡完成签到,获得积分10
15秒前
16秒前
星星完成签到 ,获得积分10
16秒前
16秒前
juice发布了新的文献求助10
16秒前
17秒前
春夏秋冬完成签到,获得积分10
17秒前
18秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3135273
求助须知:如何正确求助?哪些是违规求助? 2786262
关于积分的说明 7776475
捐赠科研通 2442202
什么是DOI,文献DOI怎么找? 1298495
科研通“疑难数据库(出版商)”最低求助积分说明 625112
版权声明 600847