Framingham risk score conventional risk factors are potent to predict all-cause mortality using machine learning algorithms: a population-based prospective cohort study over 40 years in China

弗雷明翰风险评分 机器学习 逻辑回归 接收机工作特性 置信区间 支持向量机 医学 随机森林 队列 人工智能 预测建模 前瞻性队列研究 人口 算法 队列研究 计算机科学 内科学 疾病 环境卫生
作者
Qianqian Huang,Tianshu Zeng,Jiaoyue Zhang,Jie Min,Juan Zheng,Shenghua Tian,Hantao Huang,XiaoHuan Liu,Hao Zhang,Ping Wang,Xiang Hu,Lulu Chen
出处
期刊:Journal of Investigative Medicine [SAGE Publishing]
卷期号:71 (6): 586-590
标识
DOI:10.1177/10815589231169689
摘要

Predicting all-cause mortality using available or conveniently modifiable risk factors is potentially crucial in reducing deaths precisely and efficiently. Framingham risk score (FRS) is widely used in predicting cardiovascular diseases, and its conventional risk factors are closely pertinent to deaths. Machine learning is increasingly considered to improve the predicting performances by developing predictive models. We aimed to develop the all-cause mortality predictive models using five machine learning (ML) algorithms (decision trees, random forest, support vector machine (SVM), XgBoost, and logistic regression) and determine whether FRS conventional risk factors are sufficient for predicting all-cause mortality in individuals over 40 years. Our data were obtained from a 10-year population-based prospective cohort study in China, including 9143 individuals over 40 years in 2011, and 6879 individuals followed-up in 2021. The all-cause mortality prediction models were developed using five ML algorithms by introducing all features available (182 items) or FRS conventional risk factors. The area under the receiver operating characteristic curve (AUC) was used to evaluate the performance of the predictive models. The AUC and 95% confidence interval of the all-cause mortality prediction models developed by FRS conventional risk factors using five ML algorithms were 0.75 (0.726–0.772), 0.78 (0.755–0.799), 0.75 (0.731–0.777), 0.77 (0.747–0.792), and 0.78 (0.754–0.798), respectively, which is close to the AUC values of models established by all features (0.79 (0.769–0.812), 0.83 (0.807–0.848), 0.78 (0.753–0.798), 0.82 (0.796–0.838), and 0.85 (0.826–0.866), respectively). Therefore, we tentatively put forward that FRS conventional risk factors were potent to predict all-cause mortality using machine learning algorithms in the population over 40 years.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
高兴微笑完成签到,获得积分10
刚刚
li完成签到,获得积分10
1秒前
天真博超发布了新的文献求助10
1秒前
2秒前
NIER发布了新的文献求助20
2秒前
pantio发布了新的文献求助10
2秒前
zy完成签到,获得积分10
2秒前
Gzl发布了新的文献求助10
3秒前
小马甲应助心灵美绝施采纳,获得10
3秒前
asdfg发布了新的文献求助10
3秒前
4秒前
丰那个丰发布了新的文献求助10
5秒前
大个应助小猫宝采纳,获得10
5秒前
5秒前
略略略完成签到,获得积分10
5秒前
汉堡包应助EED采纳,获得10
5秒前
坦率的匪举报xz求助涉嫌违规
6秒前
顾矜应助Deny采纳,获得10
7秒前
杪秋三十发布了新的文献求助30
8秒前
zy发布了新的文献求助10
8秒前
陈鑫发布了新的文献求助10
8秒前
111发布了新的文献求助10
8秒前
9秒前
winwin完成签到,获得积分10
9秒前
结实盼烟完成签到,获得积分10
10秒前
sunchengcehng发布了新的文献求助30
11秒前
Alinf完成签到,获得积分10
11秒前
11秒前
Alan完成签到,获得积分10
11秒前
12秒前
12秒前
Ava应助丰那个丰采纳,获得10
13秒前
田様应助停婷采纳,获得10
14秒前
14秒前
时尚的大碗完成签到,获得积分10
14秒前
rmhayze完成签到,获得积分10
14秒前
15秒前
EASA完成签到,获得积分10
15秒前
萤阳完成签到,获得积分10
15秒前
水木应助CC采纳,获得10
16秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987267
求助须知:如何正确求助?哪些是违规求助? 3529546
关于积分的说明 11245872
捐赠科研通 3268108
什么是DOI,文献DOI怎么找? 1804089
邀请新用户注册赠送积分活动 881339
科研通“疑难数据库(出版商)”最低求助积分说明 808653