过氧化物酶体
氧化应激
过氧化氢酶
化学
生物化学
细胞生物学
生物
受体
作者
Yan Liu,Wei Chen,Chenrui Li,Li Li,Ming Yang,Na Jiang,Shilu Luo,Yiyun Xi,Chongbin Liu,Yachun Han,Hao Zhao,Xuejing Zhu,Shuguang Yuan,Li Xiao,Lin Sun
出处
期刊:Redox biology
[Elsevier BV]
日期:2023-08-15
卷期号:66: 102855-102855
被引量:12
标识
DOI:10.1016/j.redox.2023.102855
摘要
Peroxisomes are metabolically active organelles that are known for exerting oxidative metabolism, but the precise mechanism remains unclear in diabetic nephropathy (DN). Here, we used proteomics to uncover a correlation between the antioxidant protein disulfide-bond A oxidoreductase-like protein (DsbA-L) and peroxisomal function. In vivo, renal tubular injury, oxidative stress, and cell apoptosis in high-fat diet plus streptozotocin (STZ)-induced diabetic mice were significantly increased, and these changes were accompanied by a "ghost" peroxisomal phenotype, which was further aggravated in DsbA-L-deficient diabetic mice. In vitro, the overexpression of DsbA-L in peroxisomes could improve peroxisomal phenotype and function, reduce oxidative stress and cell apoptosis induced by high glucose (HG, 30 mM) and palmitic acid (PA, 250 μM), but this effect was reversed by 3-Amino-1,2,4-triazole (3-AT, a catalase inhibitor). Mechanistically, DsbA-L regulated the activity of catalase by binding to it, thereby reducing peroxisomal leakage and proteasomal degradation of peroxisomal matrix proteins induced by HG and PA. Additionally, the expression of DsbA-L in renal tubules of patients with DN significantly decreased and was positively correlated with peroxisomal function. Taken together, these results highlight an important role of DsbA-L in ameliorating tubular injury in DN by improving peroxisomal function.
科研通智能强力驱动
Strongly Powered by AbleSci AI