Sample Efficient Deep Reinforcement Learning With Online State Abstraction and Causal Transformer Model Prediction

强化学习 计算机科学 抽象 人工智能 马尔可夫决策过程 样本复杂性 机器学习 概率逻辑 深度学习 样品(材料) 变压器 马尔可夫过程 数学 统计 量子力学 认识论 物理 哲学 色谱法 电压 化学
作者
Yixing Lan,Xin Xu,Qiang Fang,Jianye Hao
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-15
标识
DOI:10.1109/tnnls.2023.3296642
摘要

Deep reinforcement learning (RL) typically requires a tremendous number of training samples, which are not practical in many applications. State abstraction and world models are two promising approaches for improving sample efficiency in deep RL. However, both state abstraction and world models may degrade the learning performance. In this article, we propose an abstracted model-based policy learning (AMPL) algorithm, which improves the sample efficiency of deep RL. In AMPL, a novel state abstraction method via multistep bisimulation is first developed to learn task-related latent state spaces. Hence, the original Markov decision processes (MDPs) are compressed into abstracted MDPs. Then, a causal transformer model predictor (CTMP) is designed to approximate the abstracted MDPs and generate long-horizon simulated trajectories with a smaller multistep prediction error. Policies are efficiently learned through these trajectories within the abstracted MDPs via a modified multistep soft actor-critic algorithm with a λ -target. Moreover, theoretical analysis shows that the AMPL algorithm can improve sample efficiency during the training process. On Atari games and the DeepMind Control (DMControl) suite, AMPL surpasses current state-of-the-art deep RL algorithms in terms of sample efficiency. Furthermore, DMControl tasks with moving noises are conducted, and the results demonstrate that AMPL is robust to task-irrelevant observational distractors and significantly outperforms the existing approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
3秒前
:P发布了新的文献求助20
4秒前
Mea完成签到,获得积分10
4秒前
6秒前
高妖丽发布了新的文献求助30
6秒前
7秒前
llllt发布了新的文献求助10
10秒前
搜集达人应助zzzzzzzzzzzzb采纳,获得10
11秒前
池鱼完成签到,获得积分10
11秒前
110011发布了新的文献求助10
15秒前
所所应助科研通管家采纳,获得10
15秒前
15秒前
科研通AI2S应助科研通管家采纳,获得10
15秒前
15秒前
15秒前
15秒前
小白应助科研通管家采纳,获得10
15秒前
15秒前
15秒前
地表飞猪应助科研通管家采纳,获得10
15秒前
17秒前
gzslwddhjx完成签到,获得积分10
18秒前
21秒前
科研通AI5应助搞怪白桃采纳,获得10
23秒前
23秒前
柠檬不吃酸完成签到 ,获得积分10
24秒前
Chen完成签到,获得积分10
24秒前
25秒前
铭心发布了新的文献求助10
26秒前
28秒前
110011完成签到,获得积分10
28秒前
29秒前
正直阁完成签到,获得积分10
32秒前
小二郎应助刻苦的宛白采纳,获得30
36秒前
深海完成签到,获得积分10
38秒前
42秒前
45秒前
46秒前
46秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967131
求助须知:如何正确求助?哪些是违规求助? 3512470
关于积分的说明 11163384
捐赠科研通 3247378
什么是DOI,文献DOI怎么找? 1793799
邀请新用户注册赠送积分活动 874615
科研通“疑难数据库(出版商)”最低求助积分说明 804450