On AI-Assisted Pneumoconiosis Detection from Chest X-rays

尘肺病 医学 医疗保健 疾病 环境卫生 计算机科学 业务 医疗急救 病理 经济增长 经济
作者
Yasmeena Akhter,Rishabh Ranjan,Richa Singh,Mayank Vatsa,Santanu Chaudhury
标识
DOI:10.24963/ijcai.2023/705
摘要

According to theWorld Health Organization, Pneumoconiosis affects millions of workers globally, with an estimated 260,000 deaths annually. The burden of Pneumoconiosis is particularly high in low-income countries, where occupational safety standards are often inadequate, and the prevalence of the disease is increasing rapidly. The reduced availability of expert medical care in rural areas, where these diseases are more prevalent, further adds to the delayed screening and unfavourable outcomes of the disease. This paper aims to highlight the urgent need for early screening and detection of Pneumoconiosis, given its significant impact on affected individuals, their families, and societies as a whole. With the help of low-cost machine learning models, early screening, detection, and prevention of Pneumoconiosis can help reduce healthcare costs, particularly in low-income countries. In this direction, this research focuses on designing AI solutions for detecting different kinds of Pneumoconiosis from chest X-ray data. This will contribute to the Sustainable Development Goal 3 of ensuring healthy lives and promoting well-being for all at all ages, and present the framework for data collection and algorithm for detecting Pneumoconiosis for early screening. The baseline results show that the existing algorithms are unable to address this challenge. Therefore, it is our assertion that this research will improve state-of-the-art algorithms of segmentation, semantic segmentation, and classification not only for this disease but in general medical image analysis literature.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xxxhhh发布了新的文献求助10
1秒前
嗯嗯你说完成签到,获得积分10
1秒前
xinghong发布了新的文献求助10
3秒前
英俊的铭应助laola采纳,获得10
6秒前
6秒前
7秒前
12秒前
13秒前
研猫发布了新的文献求助10
14秒前
15秒前
dreamer完成签到 ,获得积分10
15秒前
苏姗发布了新的文献求助50
16秒前
CCC完成签到 ,获得积分10
17秒前
华仔应助lewis_xl采纳,获得10
18秒前
完美世界应助linshaoyu采纳,获得10
18秒前
joyland发布了新的文献求助10
19秒前
19秒前
abc完成签到,获得积分10
20秒前
21秒前
CodeCraft应助激昂的背包采纳,获得10
22秒前
Zz完成签到 ,获得积分10
22秒前
24秒前
abc发布了新的文献求助10
24秒前
ccc完成签到,获得积分20
25秒前
河北完成签到 ,获得积分20
26秒前
26秒前
李爱国应助xinghong采纳,获得10
27秒前
幽默钢笔发布了新的文献求助10
28秒前
在水一方应助joyland采纳,获得10
29秒前
29秒前
TIGun发布了新的文献求助10
34秒前
荭筱葒发布了新的文献求助10
35秒前
36秒前
祥子的骆驼完成签到,获得积分10
37秒前
小二郎应助俊逸的问薇采纳,获得10
38秒前
小马甲应助4U采纳,获得10
39秒前
12345发布了新的文献求助10
40秒前
40秒前
万能图书馆应助guojingjing采纳,获得10
42秒前
荭筱葒完成签到,获得积分10
42秒前
高分求助中
Continuum Thermodynamics and Material Modelling 2000
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
岡本唐貴自伝的回想画集 500
Atmosphere-ice-ocean interactions in the Antarctic 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3679987
求助须知:如何正确求助?哪些是违规求助? 3232546
关于积分的说明 9803740
捐赠科研通 2943817
什么是DOI,文献DOI怎么找? 1614262
邀请新用户注册赠送积分活动 762131
科研通“疑难数据库(出版商)”最低求助积分说明 737223