材料科学
催化作用
法拉第效率
碳纤维
氮化碳
铜
氮化物
可逆氢电极
二氧化碳电化学还原
化学工程
纳米技术
物理化学
电化学
化学
电极
冶金
一氧化碳
复合数
工作电极
复合材料
工程类
光催化
生物化学
图层(电子)
作者
Soumyabrata Roy,Zhengyuan Li,Zhiwen Chen,A. Mata,Pawan Kumar,Saurav Ch. Sarma,Ivo F. Teixeira,Ingrid F. Silva,Guanhui Gao,Nadezda V. Tarakina,Md Golam Kibria,Chandra Veer Singh,Jingjie Wu,Pulickel M. Ajayan
标识
DOI:10.1002/adma.202300713
摘要
Abstract Renewable‐electricity‐powered carbon dioxide (CO 2 ) reduction (eCO 2 R) to high‐value fuels like methane (CH 4 ) holds the potential to close the carbon cycle at meaningful scales. However, this kinetically staggered 8‐electron multistep reduction suffers from inadequate catalytic efficiency and current density. Atomic Cu‐structures can boost eCO 2 R‐to‐CH 4 selectivity due to enhanced intermediate binding energies (BEs) resulting from favorably shifted d‐band centers. In this work, 2D carbon nitride (CN) matrices, viz. Na‐polyheptazine (PHI) and Li‐polytriazine imides (PTI), are exploited to host Cu–N 2 type single‐atom sites with high density (≈1.5 at%), via a facile metal‐ion exchange process. Optimized Cu loading in nanocrystalline Cu‐PTI maximizes eCO 2 R‐to‐CH 4 performance with Faradaic efficiency (FE CH4 ) of ≈68% and a high partial current density of 348 mA cm −2 at −0.84 V vs reversible hydrogen electrode (RHE), surpassing the state‐of‐the‐art catalysts. Multi‐Cu substituted N‐appended nanopores in the CN frameworks yield thermodynamically stable quasi‐dual/triple sites with large interatomic distances dictated by the pore dimensions. First‐principles calculations elucidate the relative Cu–CN cooperative effects between the matrices and how the Cu local environment dictates the adsorbate BEs, density of states, and CO 2 ‐to‐CH 4 energy profile landscape. The 9N pores in Cu‐PTI yield cooperative Cu–Cu sites that synergistically enhance the kinetics of the rate‐limiting steps in the eCO 2 R‐to‐CH 4 pathway.
科研通智能强力驱动
Strongly Powered by AbleSci AI