Context and scale-aware YOLO for welding defect detection

人工智能 计算机科学 亮度 预处理器 背景(考古学) 焊接 计算机视觉 参数统计 水准点(测量) 对比度(视觉) 目标检测 模式识别(心理学) 数学 工程类 机械工程 古生物学 统计 大地测量学 生物 地理
作者
Jung Eun Kwon,Jae Hyeon Park,Ju Hyun Kim,Yun Hak Lee,Sung In Cho
出处
期刊:NDT & E international [Elsevier]
卷期号:139: 102919-102919 被引量:7
标识
DOI:10.1016/j.ndteint.2023.102919
摘要

Radiography testing for welding defect detection is an essential inspection procedure to ensure welding quality. However, detecting these defects is a challenging task because they have various size and aspect ratio characteristics and low perceptiveness due to the low luminance and contrast characteristics of the radiography image (RI). To address these difficulties, this paper proposes a twin model-based automatic welding defect detection method to reveal welding defects of various sizes and aspect ratios more accurately. In addition, we propose a new image adjustment technique that is optimized to improve the accuracy of welding defect detection by adaptively adjusting the luminance and contrast of a given RI. The proposed method consists of three steps: preprocessing for defect detection (PDD), context-aware image adjustment (CIA), and scale-aware defect detection (SDD). In the PDD step, we extract the region of interest from a RI based on text detection by removing regions unnecessary for welding defect detection. In the CIA step, we adaptively optimize a given image to improve the detection accuracy by utilizing a differentiable parametric module that performs image enhancement filtering. In the SDD step, we define a twin model that outputs the embeddings of different scales from the adjusted RI to detect the defects with various scales accurately. At the inference stage of the detection model, we ensemble the results using a weighted fusion of the detection results from the twin model to take advantage of the ensemble strategy. The experimental results indicate that the proposed method achieves outstanding detection accuracy compared to the benchmark methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wwb完成签到,获得积分10
刚刚
张自信完成签到,获得积分10
1秒前
华仔应助VDC采纳,获得10
1秒前
嘟嘟完成签到,获得积分10
2秒前
卡卡完成签到,获得积分10
2秒前
2秒前
十三发布了新的文献求助10
2秒前
2秒前
3秒前
3秒前
甩看文献发布了新的文献求助10
3秒前
wang完成签到,获得积分10
4秒前
4秒前
4秒前
4秒前
4秒前
LONG完成签到,获得积分10
5秒前
5秒前
甜蜜秋蝶完成签到,获得积分10
5秒前
6秒前
TT发布了新的文献求助10
7秒前
啊实打实发布了新的文献求助10
7秒前
yam001发布了新的文献求助30
8秒前
Stanley完成签到,获得积分10
8秒前
LONG发布了新的文献求助10
8秒前
亮亮发布了新的文献求助50
8秒前
LZQ应助细心的小蜜蜂采纳,获得30
9秒前
艺玲发布了新的文献求助10
9秒前
小二郎应助Seven采纳,获得10
9秒前
设计狂魔完成签到,获得积分10
9秒前
9秒前
10秒前
韭黄发布了新的文献求助10
10秒前
科研小白完成签到,获得积分10
10秒前
11秒前
9℃发布了新的文献求助10
11秒前
甩看文献完成签到,获得积分10
11秒前
11秒前
欣喜书桃关注了科研通微信公众号
12秒前
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762