Context and scale-aware YOLO for welding defect detection

人工智能 计算机科学 亮度 预处理器 背景(考古学) 焊接 计算机视觉 参数统计 水准点(测量) 对比度(视觉) 目标检测 模式识别(心理学) 数学 工程类 机械工程 古生物学 统计 大地测量学 生物 地理
作者
Jung Eun Kwon,Jae Hyeon Park,Ju Hyun Kim,Yun Hak Lee,Sung In Cho
出处
期刊:NDT & E international [Elsevier]
卷期号:139: 102919-102919 被引量:21
标识
DOI:10.1016/j.ndteint.2023.102919
摘要

Radiography testing for welding defect detection is an essential inspection procedure to ensure welding quality. However, detecting these defects is a challenging task because they have various size and aspect ratio characteristics and low perceptiveness due to the low luminance and contrast characteristics of the radiography image (RI). To address these difficulties, this paper proposes a twin model-based automatic welding defect detection method to reveal welding defects of various sizes and aspect ratios more accurately. In addition, we propose a new image adjustment technique that is optimized to improve the accuracy of welding defect detection by adaptively adjusting the luminance and contrast of a given RI. The proposed method consists of three steps: preprocessing for defect detection (PDD), context-aware image adjustment (CIA), and scale-aware defect detection (SDD). In the PDD step, we extract the region of interest from a RI based on text detection by removing regions unnecessary for welding defect detection. In the CIA step, we adaptively optimize a given image to improve the detection accuracy by utilizing a differentiable parametric module that performs image enhancement filtering. In the SDD step, we define a twin model that outputs the embeddings of different scales from the adjusted RI to detect the defects with various scales accurately. At the inference stage of the detection model, we ensemble the results using a weighted fusion of the detection results from the twin model to take advantage of the ensemble strategy. The experimental results indicate that the proposed method achieves outstanding detection accuracy compared to the benchmark methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
飞云发布了新的文献求助10
1秒前
2秒前
2秒前
2秒前
sss发布了新的文献求助10
2秒前
周益浩发布了新的文献求助10
3秒前
汤帅臣完成签到,获得积分10
3秒前
3秒前
111发布了新的文献求助10
3秒前
文静的立果完成签到,获得积分20
3秒前
静静完成签到,获得积分10
3秒前
早早应助CCD采纳,获得20
4秒前
量子星尘发布了新的文献求助10
4秒前
5秒前
5秒前
Yee发布了新的文献求助30
6秒前
科目三应助cc66采纳,获得10
7秒前
lm发布了新的文献求助10
7秒前
LPH01发布了新的文献求助10
7秒前
大胆诗云发布了新的文献求助10
7秒前
无极微光应助张雯雯采纳,获得20
8秒前
南风南下发布了新的文献求助10
8秒前
8秒前
9秒前
循循完成签到,获得积分10
9秒前
9秒前
共享精神应助忧虑的安青采纳,获得10
10秒前
10秒前
打打应助Yanhai采纳,获得10
10秒前
英俊的铭应助111采纳,获得10
10秒前
CCD完成签到,获得积分10
11秒前
11秒前
13秒前
恩善发布了新的文献求助10
14秒前
Wei完成签到,获得积分10
14秒前
14秒前
15秒前
16秒前
深情安青应助南风南下采纳,获得200
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1400
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5513523
求助须知:如何正确求助?哪些是违规求助? 4607732
关于积分的说明 14506652
捐赠科研通 4543272
什么是DOI,文献DOI怎么找? 2489491
邀请新用户注册赠送积分活动 1471450
关于科研通互助平台的介绍 1443447