已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Context and scale-aware YOLO for welding defect detection

人工智能 计算机科学 亮度 预处理器 背景(考古学) 焊接 计算机视觉 参数统计 水准点(测量) 对比度(视觉) 目标检测 模式识别(心理学) 数学 工程类 机械工程 生物 统计 古生物学 地理 大地测量学
作者
Jung Eun Kwon,Jae Hyeon Park,Ju Hyun Kim,Yun Hak Lee,Sung In Cho
出处
期刊:NDT & E international [Elsevier]
卷期号:139: 102919-102919 被引量:21
标识
DOI:10.1016/j.ndteint.2023.102919
摘要

Radiography testing for welding defect detection is an essential inspection procedure to ensure welding quality. However, detecting these defects is a challenging task because they have various size and aspect ratio characteristics and low perceptiveness due to the low luminance and contrast characteristics of the radiography image (RI). To address these difficulties, this paper proposes a twin model-based automatic welding defect detection method to reveal welding defects of various sizes and aspect ratios more accurately. In addition, we propose a new image adjustment technique that is optimized to improve the accuracy of welding defect detection by adaptively adjusting the luminance and contrast of a given RI. The proposed method consists of three steps: preprocessing for defect detection (PDD), context-aware image adjustment (CIA), and scale-aware defect detection (SDD). In the PDD step, we extract the region of interest from a RI based on text detection by removing regions unnecessary for welding defect detection. In the CIA step, we adaptively optimize a given image to improve the detection accuracy by utilizing a differentiable parametric module that performs image enhancement filtering. In the SDD step, we define a twin model that outputs the embeddings of different scales from the adjusted RI to detect the defects with various scales accurately. At the inference stage of the detection model, we ensemble the results using a weighted fusion of the detection results from the twin model to take advantage of the ensemble strategy. The experimental results indicate that the proposed method achieves outstanding detection accuracy compared to the benchmark methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
YT发布了新的文献求助10
1秒前
火鸡味锅巴完成签到 ,获得积分10
3秒前
cqhecq完成签到,获得积分10
3秒前
感谢发布了新的文献求助10
3秒前
格物完成签到,获得积分10
6秒前
浮游应助科研通管家采纳,获得10
10秒前
打打应助科研通管家采纳,获得10
10秒前
浮游应助科研通管家采纳,获得10
10秒前
哈基米德应助科研通管家采纳,获得20
10秒前
10秒前
Perry应助激昂的画笔采纳,获得30
11秒前
小小鱼完成签到 ,获得积分10
16秒前
18秒前
19秒前
luocan完成签到,获得积分10
21秒前
21秒前
怡然剑成完成签到 ,获得积分10
22秒前
吼吼哈嘿发布了新的文献求助10
22秒前
万能图书馆应助可乐采纳,获得10
23秒前
枫威完成签到 ,获得积分10
23秒前
24秒前
24秒前
自觉匪完成签到 ,获得积分10
24秒前
果果发布了新的文献求助10
24秒前
小波完成签到 ,获得积分10
26秒前
善学以致用应助duoduoqian采纳,获得30
26秒前
了了发布了新的文献求助10
26秒前
脑洞疼应助李小小采纳,获得10
29秒前
hcsdgf完成签到 ,获得积分10
30秒前
mwm完成签到 ,获得积分10
30秒前
了了完成签到,获得积分10
36秒前
领导范儿应助故意的幻然采纳,获得10
41秒前
浮游应助我还是做条鱼吧采纳,获得10
43秒前
无花果应助俏皮短靴采纳,获得10
45秒前
SHF完成签到,获得积分10
45秒前
何木木完成签到 ,获得积分10
47秒前
48秒前
49秒前
木由发布了新的文献求助10
49秒前
wjp完成签到 ,获得积分10
50秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Kolmogorov, A. N. Qualitative study of mathematical models of populations. Problems of Cybernetics, 1972, 25, 100-106 800
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5301612
求助须知:如何正确求助?哪些是违规求助? 4449085
关于积分的说明 13847800
捐赠科研通 4335167
什么是DOI,文献DOI怎么找? 2380143
邀请新用户注册赠送积分活动 1375107
关于科研通互助平台的介绍 1341144