Context and scale-aware YOLO for welding defect detection

人工智能 计算机科学 亮度 预处理器 背景(考古学) 焊接 计算机视觉 参数统计 水准点(测量) 对比度(视觉) 目标检测 模式识别(心理学) 数学 工程类 机械工程 古生物学 统计 大地测量学 生物 地理
作者
Jung Eun Kwon,Jae Hyeon Park,Ju Hyun Kim,Yun Hak Lee,Sung In Cho
出处
期刊:NDT & E international [Elsevier]
卷期号:139: 102919-102919 被引量:21
标识
DOI:10.1016/j.ndteint.2023.102919
摘要

Radiography testing for welding defect detection is an essential inspection procedure to ensure welding quality. However, detecting these defects is a challenging task because they have various size and aspect ratio characteristics and low perceptiveness due to the low luminance and contrast characteristics of the radiography image (RI). To address these difficulties, this paper proposes a twin model-based automatic welding defect detection method to reveal welding defects of various sizes and aspect ratios more accurately. In addition, we propose a new image adjustment technique that is optimized to improve the accuracy of welding defect detection by adaptively adjusting the luminance and contrast of a given RI. The proposed method consists of three steps: preprocessing for defect detection (PDD), context-aware image adjustment (CIA), and scale-aware defect detection (SDD). In the PDD step, we extract the region of interest from a RI based on text detection by removing regions unnecessary for welding defect detection. In the CIA step, we adaptively optimize a given image to improve the detection accuracy by utilizing a differentiable parametric module that performs image enhancement filtering. In the SDD step, we define a twin model that outputs the embeddings of different scales from the adjusted RI to detect the defects with various scales accurately. At the inference stage of the detection model, we ensemble the results using a weighted fusion of the detection results from the twin model to take advantage of the ensemble strategy. The experimental results indicate that the proposed method achieves outstanding detection accuracy compared to the benchmark methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
耶耶小豆包完成签到 ,获得积分10
2秒前
2秒前
小二郎应助BINGBING1230采纳,获得10
3秒前
leezh发布了新的文献求助10
4秒前
白鸽鸽完成签到,获得积分10
4秒前
5秒前
chenzihao完成签到,获得积分10
9秒前
小九九发布了新的文献求助10
10秒前
Orange应助小鹏采纳,获得10
10秒前
端庄青雪完成签到,获得积分10
13秒前
上官若男应助科研通管家采纳,获得10
14秒前
14秒前
Ava应助科研通管家采纳,获得10
14秒前
14秒前
排骨年糕发布了新的文献求助10
15秒前
刘璟高完成签到,获得积分10
17秒前
小鹏完成签到,获得积分10
18秒前
21秒前
英俊的铭应助小九九采纳,获得10
21秒前
庸人自扰完成签到,获得积分10
24秒前
小鹏发布了新的文献求助10
25秒前
十一月的阴天完成签到,获得积分10
25秒前
26秒前
流香完成签到,获得积分10
26秒前
zzzllove完成签到 ,获得积分10
27秒前
大宝君应助qqqyy采纳,获得30
28秒前
天空之城发布了新的文献求助200
30秒前
回眸是明眸完成签到,获得积分10
30秒前
思源应助leezh采纳,获得10
30秒前
苏桑焉完成签到 ,获得积分10
30秒前
30秒前
30秒前
999完成签到,获得积分10
33秒前
科研通AI6应助安白采纳,获得10
34秒前
平常小懒猪完成签到,获得积分10
35秒前
研友_LNBeyL发布了新的文献求助10
35秒前
淡定访枫发布了新的文献求助10
35秒前
35秒前
isle完成签到 ,获得积分10
36秒前
36秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5565699
求助须知:如何正确求助?哪些是违规求助? 4650686
关于积分的说明 14692512
捐赠科研通 4592693
什么是DOI,文献DOI怎么找? 2519716
邀请新用户注册赠送积分活动 1492102
关于科研通互助平台的介绍 1463316