Context and scale-aware YOLO for welding defect detection

人工智能 计算机科学 亮度 预处理器 背景(考古学) 焊接 计算机视觉 参数统计 水准点(测量) 对比度(视觉) 目标检测 模式识别(心理学) 数学 工程类 机械工程 生物 统计 古生物学 地理 大地测量学
作者
Jung Eun Kwon,Jae Hyeon Park,Ju Hyun Kim,Yun Hak Lee,Sung In Cho
出处
期刊:NDT & E international [Elsevier BV]
卷期号:139: 102919-102919 被引量:15
标识
DOI:10.1016/j.ndteint.2023.102919
摘要

Radiography testing for welding defect detection is an essential inspection procedure to ensure welding quality. However, detecting these defects is a challenging task because they have various size and aspect ratio characteristics and low perceptiveness due to the low luminance and contrast characteristics of the radiography image (RI). To address these difficulties, this paper proposes a twin model-based automatic welding defect detection method to reveal welding defects of various sizes and aspect ratios more accurately. In addition, we propose a new image adjustment technique that is optimized to improve the accuracy of welding defect detection by adaptively adjusting the luminance and contrast of a given RI. The proposed method consists of three steps: preprocessing for defect detection (PDD), context-aware image adjustment (CIA), and scale-aware defect detection (SDD). In the PDD step, we extract the region of interest from a RI based on text detection by removing regions unnecessary for welding defect detection. In the CIA step, we adaptively optimize a given image to improve the detection accuracy by utilizing a differentiable parametric module that performs image enhancement filtering. In the SDD step, we define a twin model that outputs the embeddings of different scales from the adjusted RI to detect the defects with various scales accurately. At the inference stage of the detection model, we ensemble the results using a weighted fusion of the detection results from the twin model to take advantage of the ensemble strategy. The experimental results indicate that the proposed method achieves outstanding detection accuracy compared to the benchmark methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大力荷花发布了新的文献求助10
1秒前
我嘞个豆应助虎头怪采纳,获得50
1秒前
ZSH关闭了ZSH文献求助
4秒前
4秒前
HXX完成签到,获得积分20
4秒前
keock发布了新的文献求助10
4秒前
JamesPei应助卫绯采纳,获得10
9秒前
田様应助大力荷花采纳,获得10
10秒前
文静千凡发布了新的文献求助10
10秒前
不三不四完成签到,获得积分10
12秒前
Ambrose发布了新的文献求助10
13秒前
13秒前
阳光怀亦完成签到,获得积分10
14秒前
none发布了新的文献求助10
16秒前
17秒前
鄢廷芮发布了新的文献求助10
20秒前
21秒前
22秒前
Harry发布了新的文献求助10
23秒前
wang发布了新的文献求助10
26秒前
淡然老头完成签到 ,获得积分10
28秒前
28秒前
美好焦发布了新的文献求助10
28秒前
29秒前
17完成签到,获得积分20
31秒前
Lucas应助phw2333采纳,获得20
31秒前
Joe完成签到,获得积分10
33秒前
33秒前
berg发布了新的文献求助10
35秒前
万能图书馆应助wang采纳,获得10
36秒前
boogie发布了新的文献求助30
36秒前
量子星尘发布了新的文献求助10
36秒前
17发布了新的文献求助10
36秒前
李健的小迷弟应助ningwu采纳,获得10
36秒前
情怀应助mmm采纳,获得30
37秒前
Aprilapple发布了新的文献求助10
37秒前
我是老大应助zjh采纳,获得10
38秒前
39秒前
m___发布了新的文献求助10
39秒前
安于心发布了新的文献求助10
39秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952529
求助须知:如何正确求助?哪些是违规求助? 3497949
关于积分的说明 11089475
捐赠科研通 3228442
什么是DOI,文献DOI怎么找? 1784930
邀请新用户注册赠送积分活动 868992
科研通“疑难数据库(出版商)”最低求助积分说明 801309