预处理器
计算机科学
过程(计算)
校准
数据挖掘
数据预处理
蒙特卡罗方法
算法
人工智能
统计
数学
操作系统
作者
Shenghao Wang,Manman Lin,Yanhong Meng,Tao Jiang,Fuling Fan,Shuanghong Wang
标识
DOI:10.1016/j.saa.2023.123224
摘要
An essential step in the application of near infrared spectroscopy technology is the spectrum preprocessing. A reasonable implementation of it ensures that the effective spectral information is correctly extracted and, also that the model's accuracy is increased. However, some analysts' research still uses the manual approach of trial and error, particularly those less skilled ones. Previous papers have provided preprocessing optimization algorithms for NIR, but there are still some problems that need to be resolved, such as the unwieldy sequence determination of preprocessing method or, the fluctuated optimization outcomes or, lack of sufficient statistical information. This research suggests a spectrum auto-analysis methodology named self-expansion full information optimization strategy, a new powerful open-source technique for concurrently addressing all of these above issues simultaneously. For the first time in the field of chemometrics, this algorithm offers a reliable and effective automatic near infrared auto-modelling method based on the statistical informatics. With the aid of its built-in modules, such as information generators, spectrum processors, etc., it is able to fully search the common preprocessing techniques, which is determined by Monte Carlo cross validation. Then the final ensemble calibration model is built by employing the optimized preprocessing schemes, along with the wavelength variables screening algorithm. The optimization strategy can offer the user objective useful statistics information created throughout the modeling process to further examine the model's effectiveness. The results demonstrate that the suggested method can easily and successfully extract spectrum information and develop calibration models by putting it to the test on two groups of actual near-infrared spectral data. Additionally, this optimization strategy can also be applied to other spectrum analysis areas, such Raman spectroscopy or infrared spectroscopy, by changing a few of its parameters, and has extraordinary application value.
科研通智能强力驱动
Strongly Powered by AbleSci AI