A molecular dynamics study on ionic current rectification of ultra-narrow conical nanopore

纳米孔 化学物理 离子键合 电场 离子 锥面 整改 分子动力学 离子半径 化学 极化(电化学) 材料科学 纳米技术 离子流 分析化学(期刊) 计算化学 物理化学 电压 物理 复合材料 有机化学 量子力学
作者
Xiaodong He,Jialiang Chen
出处
期刊:Journal of Molecular Liquids [Elsevier]
卷期号:387: 122679-122679 被引量:1
标识
DOI:10.1016/j.molliq.2023.122679
摘要

Understanding the ionic current rectification (ICR) is crucial for elucidating the physical mechanisms of ions transport in various processes and for advancing the development of nanodevices. Using molecular dynamics simulations, we explore the properties of ionic motion in negatively charged conical nanopores with a tip radius fixed at 1.51 nm. The effects of ion transport behavior on ICR under different electric fields, angles, and cation species were studied. The rectification ratio increases linearly with an increase in angle (0–15°), slows down and then eventually stabilizes with an increase in electric fields, and depends on the cation species being used. Our results indicate that the ion current is mainly contributed by the flow of cations in ultra-narrow nanopores. Further analysis of the ion concentration distribution reveals that the inverse ICR phenomenon is mainly caused by the cation concentration polarization at the tip under negative electric field, making cations are difficult to enter the nanopore from the tip, resulting in a decrease in ionic current. Additionally, cations entering the nanopore from the tip become trapped in the potential well of the tip at a negative electric field, leading to lower ion mobility and ionic current. Finally, it is found the difference in ICR ratio mainly results from the migration rate of cations with different nanopore angles and different ionic types. Our study provides valuable insights into the behavior of ions in ultra-narrow conical nanopores and the mechanisms behind ICR, which could guide the design and development of nanodevices that rely on ionic transport, such as biosensors and energy storage systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
麻黄阿葵完成签到,获得积分10
刚刚
刚刚
1秒前
何果果完成签到,获得积分10
1秒前
zhangxu发布了新的文献求助10
2秒前
研友_8KX15L发布了新的文献求助10
2秒前
Orange应助遇楹采纳,获得10
2秒前
2秒前
hailiangzheng发布了新的文献求助10
3秒前
随机子应助DENG12345采纳,获得10
3秒前
旋疯小子发布了新的文献求助10
3秒前
午餐肉完成签到,获得积分10
3秒前
派大星完成签到 ,获得积分10
4秒前
安静的芝麻完成签到,获得积分10
4秒前
绵绵球应助韦霁滢采纳,获得30
4秒前
淡然初蝶发布了新的文献求助10
5秒前
5秒前
WWXWWX发布了新的文献求助10
5秒前
yezilin完成签到,获得积分10
5秒前
暗夜星辰发布了新的文献求助10
5秒前
芬芬完成签到,获得积分10
6秒前
轻松盼望完成签到,获得积分20
6秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
充电宝应助科研通管家采纳,获得10
6秒前
CodeCraft应助科研通管家采纳,获得10
7秒前
Akim应助科研通管家采纳,获得10
7秒前
小凯应助科研通管家采纳,获得10
7秒前
小马甲应助科研通管家采纳,获得10
7秒前
外向葶完成签到,获得积分10
7秒前
7秒前
谦让笑珊完成签到 ,获得积分10
7秒前
陈晓迪1992完成签到,获得积分10
7秒前
germini99发布了新的文献求助10
7秒前
wao完成签到 ,获得积分10
8秒前
吱哦周完成签到,获得积分10
8秒前
中华有为完成签到,获得积分10
8秒前
好好好之顺利毕业完成签到,获得积分10
8秒前
晴空完成签到,获得积分10
9秒前
失眠傥完成签到,获得积分10
9秒前
丘比特应助陈兮兮采纳,获得10
9秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Becoming: An Introduction to Jung's Concept of Individuation 600
Communist propaganda: a fact book, 1957-1958 500
Briefe aus Shanghai 1946‒1952 (Dokumente eines Kulturschocks) 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3167375
求助须知:如何正确求助?哪些是违规求助? 2818893
关于积分的说明 7923236
捐赠科研通 2478710
什么是DOI,文献DOI怎么找? 1320438
科研通“疑难数据库(出版商)”最低求助积分说明 632803
版权声明 602443