A molecular dynamics study on ionic current rectification of ultra-narrow conical nanopore

纳米孔 化学物理 离子键合 电场 离子 锥面 整改 分子动力学 离子半径 化学 极化(电化学) 材料科学 纳米技术 离子流 分析化学(期刊) 计算化学 物理化学 电压 物理 复合材料 有机化学 量子力学
作者
Xiaodong He,Jialiang Chen
出处
期刊:Journal of Molecular Liquids [Elsevier]
卷期号:387: 122679-122679 被引量:1
标识
DOI:10.1016/j.molliq.2023.122679
摘要

Understanding the ionic current rectification (ICR) is crucial for elucidating the physical mechanisms of ions transport in various processes and for advancing the development of nanodevices. Using molecular dynamics simulations, we explore the properties of ionic motion in negatively charged conical nanopores with a tip radius fixed at 1.51 nm. The effects of ion transport behavior on ICR under different electric fields, angles, and cation species were studied. The rectification ratio increases linearly with an increase in angle (0–15°), slows down and then eventually stabilizes with an increase in electric fields, and depends on the cation species being used. Our results indicate that the ion current is mainly contributed by the flow of cations in ultra-narrow nanopores. Further analysis of the ion concentration distribution reveals that the inverse ICR phenomenon is mainly caused by the cation concentration polarization at the tip under negative electric field, making cations are difficult to enter the nanopore from the tip, resulting in a decrease in ionic current. Additionally, cations entering the nanopore from the tip become trapped in the potential well of the tip at a negative electric field, leading to lower ion mobility and ionic current. Finally, it is found the difference in ICR ratio mainly results from the migration rate of cations with different nanopore angles and different ionic types. Our study provides valuable insights into the behavior of ions in ultra-narrow conical nanopores and the mechanisms behind ICR, which could guide the design and development of nanodevices that rely on ionic transport, such as biosensors and energy storage systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ava应助敏敏采纳,获得10
刚刚
斯文败类应助zzyt采纳,获得10
1秒前
唐唐发布了新的文献求助10
1秒前
1秒前
1秒前
义气秋灵完成签到,获得积分10
2秒前
挺喜欢你完成签到,获得积分10
2秒前
科研通AI6应助福尔摩环采纳,获得10
2秒前
3秒前
yuan完成签到,获得积分20
3秒前
gyl完成签到 ,获得积分10
3秒前
田哲完成签到 ,获得积分10
5秒前
阿莫西西林完成签到,获得积分10
5秒前
5秒前
酷波er应助义气秋灵采纳,获得10
6秒前
沉甸甸完成签到,获得积分10
6秒前
6秒前
着急的青枫应助惊艳采纳,获得20
7秒前
7秒前
杨pangpang发布了新的文献求助20
8秒前
8秒前
9秒前
9秒前
yuan发布了新的文献求助10
10秒前
Tracy麦子发布了新的文献求助10
10秒前
hou发布了新的文献求助10
11秒前
xiaole完成签到,获得积分10
11秒前
扶风阁主发布了新的文献求助10
11秒前
12秒前
李彦发布了新的文献求助10
13秒前
Mandy完成签到,获得积分10
13秒前
杨pangpang完成签到,获得积分10
14秒前
14秒前
jxf完成签到 ,获得积分10
15秒前
研友_zndKVL发布了新的文献求助10
15秒前
lslslslsllss发布了新的文献求助20
15秒前
15秒前
16秒前
M1stake完成签到,获得积分10
18秒前
Jane发布了新的文献求助10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Corrosion and corrosion control 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5373703
求助须知:如何正确求助?哪些是违规求助? 4499730
关于积分的说明 14007113
捐赠科研通 4406667
什么是DOI,文献DOI怎么找? 2420557
邀请新用户注册赠送积分活动 1413377
关于科研通互助平台的介绍 1389933