Transfer Learning Improves Unsupervised Assignment of ICD codes with Clinical Notes

计算机科学 学习迁移 人工智能 编码(社会科学) 无监督学习 机器学习 医学分类 源代码 数据建模 数据挖掘 数据库 数学 医学 统计 操作系统 护理部
作者
Amit Kumar,Souparna Das,Suman Roy
标识
DOI:10.1109/icdh60066.2023.00047
摘要

In healthcare industry, it is a standard practice to assign a set of International Classification of Diseases (ICD) to a clinical note (which can be a patient visit, a discharge summary and the like) as part of medical coding process mandated by medical care and patient billing. A supervised framework is adopted for most of the automated ICD coding assignment methods in which a subset of the clinical notes are a-priori labeled with ICD codes. But in lot of cases enough labeled texts are not available. These call for an unsupervised assignment of ICD codes. However, the quality of the data plays an important role in the performance of unsupervised coding, - low quality data leads to degradation of performance. In this paper, we explore a transfer learning approach for ICD coding using a combination of pre-training and supervised fine-tuning. We use a hierarchical BERT model comprising of a Bi-LSTM layered on top of BERT (this removes the restriction on the size of clinical texts)) as part of model architecture, and pre-train it on the total corpus (which include both labeled and unlabeled data). Next we transfer its weights to fine tune the model with labeled data (MIMIC data) in a supervised framework and then use this model to predict ICD code for unlabeled data using token similarity. This is the first use of using transfer learning in ICD prediction to our knowledge. Finally we show the efficacy of our transfer learning approach through rigorous experimentation, - there is 20% gain of sensitivity (recall) and 6% lift in specificity in ICD prediction compared to direct unsupervised prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
模糊中正应助11采纳,获得30
刚刚
尹冰露发布了新的文献求助10
1秒前
zz发布了新的文献求助10
1秒前
36456657应助鲤鱼采纳,获得10
1秒前
1秒前
2秒前
3秒前
连冷安发布了新的文献求助10
3秒前
shfgref完成签到,获得积分10
4秒前
4秒前
小胖发布了新的文献求助10
4秒前
乐乐应助Lixian采纳,获得10
5秒前
yy发布了新的文献求助10
5秒前
6秒前
meiguang完成签到,获得积分10
6秒前
尹冰露完成签到,获得积分10
7秒前
7秒前
风和日li完成签到,获得积分0
7秒前
赘婿应助天上人间采纳,获得10
8秒前
8秒前
8秒前
王其超完成签到,获得积分10
8秒前
香蕉觅云应助合适的笑白采纳,获得10
9秒前
9秒前
冰留完成签到 ,获得积分10
9秒前
cebr发布了新的文献求助10
10秒前
柯柯完成签到,获得积分10
11秒前
chen完成签到,获得积分10
11秒前
赟yun完成签到,获得积分0
11秒前
11秒前
贺儿完成签到 ,获得积分10
12秒前
13秒前
Jasen发布了新的文献求助10
13秒前
独特乘云发布了新的文献求助10
13秒前
kk发布了新的文献求助10
14秒前
大个应助wisteety采纳,获得10
15秒前
番茄完成签到,获得积分10
15秒前
15秒前
zzzlk发布了新的文献求助10
15秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1200
How Maoism Was Made: Reconstructing China, 1949-1965 800
Medical technology industry in China 600
中国内窥镜润滑剂行业市场占有率及投资前景预测分析报告 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3311845
求助须知:如何正确求助?哪些是违规求助? 2944668
关于积分的说明 8520492
捐赠科研通 2620270
什么是DOI,文献DOI怎么找? 1432725
科研通“疑难数据库(出版商)”最低求助积分说明 664756
邀请新用户注册赠送积分活动 650053