Transfer Learning Improves Unsupervised Assignment of ICD codes with Clinical Notes

计算机科学 学习迁移 人工智能 编码(社会科学) 无监督学习 机器学习 医学分类 源代码 数据建模 数据挖掘 数据库 数学 医学 统计 操作系统 护理部
作者
Amit Kumar,Souparna Das,Suman Roy
标识
DOI:10.1109/icdh60066.2023.00047
摘要

In healthcare industry, it is a standard practice to assign a set of International Classification of Diseases (ICD) to a clinical note (which can be a patient visit, a discharge summary and the like) as part of medical coding process mandated by medical care and patient billing. A supervised framework is adopted for most of the automated ICD coding assignment methods in which a subset of the clinical notes are a-priori labeled with ICD codes. But in lot of cases enough labeled texts are not available. These call for an unsupervised assignment of ICD codes. However, the quality of the data plays an important role in the performance of unsupervised coding, - low quality data leads to degradation of performance. In this paper, we explore a transfer learning approach for ICD coding using a combination of pre-training and supervised fine-tuning. We use a hierarchical BERT model comprising of a Bi-LSTM layered on top of BERT (this removes the restriction on the size of clinical texts)) as part of model architecture, and pre-train it on the total corpus (which include both labeled and unlabeled data). Next we transfer its weights to fine tune the model with labeled data (MIMIC data) in a supervised framework and then use this model to predict ICD code for unlabeled data using token similarity. This is the first use of using transfer learning in ICD prediction to our knowledge. Finally we show the efficacy of our transfer learning approach through rigorous experimentation, - there is 20% gain of sensitivity (recall) and 6% lift in specificity in ICD prediction compared to direct unsupervised prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
asdfg发布了新的文献求助10
刚刚
1秒前
丰那个丰发布了新的文献求助10
2秒前
大个应助小猫宝采纳,获得10
2秒前
2秒前
略略略完成签到,获得积分10
2秒前
汉堡包应助EED采纳,获得10
2秒前
坦率的匪举报xz求助涉嫌违规
3秒前
顾矜应助Deny采纳,获得10
4秒前
杪秋三十发布了新的文献求助30
5秒前
zy发布了新的文献求助10
5秒前
陈鑫发布了新的文献求助10
5秒前
111发布了新的文献求助10
5秒前
6秒前
winwin完成签到,获得积分10
6秒前
结实盼烟完成签到,获得积分10
7秒前
sunchengcehng发布了新的文献求助30
8秒前
Alinf完成签到,获得积分10
8秒前
8秒前
Alan完成签到,获得积分10
8秒前
9秒前
9秒前
Ava应助丰那个丰采纳,获得10
10秒前
田様应助停婷采纳,获得10
11秒前
11秒前
时尚的大碗完成签到,获得积分10
11秒前
rmhayze完成签到,获得积分10
11秒前
12秒前
EASA完成签到,获得积分10
12秒前
萤阳完成签到,获得积分10
12秒前
水木应助CC采纳,获得10
13秒前
ljys发布了新的文献求助10
13秒前
匿名发布了新的文献求助30
13秒前
xx完成签到,获得积分10
14秒前
卫卫完成签到 ,获得积分10
14秒前
木悠发布了新的文献求助10
14秒前
leodu发布了新的文献求助10
15秒前
Ann完成签到,获得积分10
15秒前
15秒前
hzh完成签到 ,获得积分10
15秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987267
求助须知:如何正确求助?哪些是违规求助? 3529546
关于积分的说明 11245872
捐赠科研通 3268108
什么是DOI,文献DOI怎么找? 1804089
邀请新用户注册赠送积分活动 881339
科研通“疑难数据库(出版商)”最低求助积分说明 808653