Transfer Learning Improves Unsupervised Assignment of ICD codes with Clinical Notes

计算机科学 学习迁移 人工智能 编码(社会科学) 无监督学习 机器学习 医学分类 源代码 数据建模 数据挖掘 数据库 医学 统计 数学 护理部 操作系统
作者
Amit Kumar,Souparna Das,Suman Roy
标识
DOI:10.1109/icdh60066.2023.00047
摘要

In healthcare industry, it is a standard practice to assign a set of International Classification of Diseases (ICD) to a clinical note (which can be a patient visit, a discharge summary and the like) as part of medical coding process mandated by medical care and patient billing. A supervised framework is adopted for most of the automated ICD coding assignment methods in which a subset of the clinical notes are a-priori labeled with ICD codes. But in lot of cases enough labeled texts are not available. These call for an unsupervised assignment of ICD codes. However, the quality of the data plays an important role in the performance of unsupervised coding, - low quality data leads to degradation of performance. In this paper, we explore a transfer learning approach for ICD coding using a combination of pre-training and supervised fine-tuning. We use a hierarchical BERT model comprising of a Bi-LSTM layered on top of BERT (this removes the restriction on the size of clinical texts)) as part of model architecture, and pre-train it on the total corpus (which include both labeled and unlabeled data). Next we transfer its weights to fine tune the model with labeled data (MIMIC data) in a supervised framework and then use this model to predict ICD code for unlabeled data using token similarity. This is the first use of using transfer learning in ICD prediction to our knowledge. Finally we show the efficacy of our transfer learning approach through rigorous experimentation, - there is 20% gain of sensitivity (recall) and 6% lift in specificity in ICD prediction compared to direct unsupervised prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
糖葫芦完成签到,获得积分10
刚刚
123456完成签到,获得积分20
刚刚
虚幻龙猫完成签到,获得积分10
1秒前
Orange应助Goomo采纳,获得30
3秒前
jiesenya完成签到,获得积分10
3秒前
刁刁完成签到 ,获得积分20
3秒前
3秒前
3秒前
Fang发布了新的文献求助30
4秒前
1123完成签到,获得积分20
4秒前
开放的向雁完成签到 ,获得积分10
6秒前
6秒前
7秒前
cxq发布了新的文献求助10
7秒前
Bonnie发布了新的文献求助10
7秒前
苏格拉底的嘲笑完成签到,获得积分10
9秒前
9秒前
鲤鱼寒梦完成签到,获得积分10
10秒前
10秒前
佟厉完成签到 ,获得积分10
10秒前
小蘑菇应助小易采纳,获得10
12秒前
Spring完成签到,获得积分10
12秒前
12秒前
12秒前
量子星尘发布了新的文献求助10
12秒前
fishbig发布了新的文献求助10
12秒前
顾矜应助Frank采纳,获得30
12秒前
frr发布了新的文献求助10
13秒前
13秒前
狂犬喵发布了新的文献求助10
14秒前
15秒前
fufu完成签到,获得积分20
16秒前
lalala发布了新的文献求助30
16秒前
Goomo发布了新的文献求助30
16秒前
紧张的毛衣完成签到,获得积分10
16秒前
表弟慢热手完成签到 ,获得积分10
16秒前
fishbig完成签到,获得积分10
16秒前
宁天问发布了新的文献求助10
17秒前
紧张的友灵完成签到 ,获得积分10
18秒前
顺利的雁梅完成签到 ,获得积分10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 891
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5424782
求助须知:如何正确求助?哪些是违规求助? 4539099
关于积分的说明 14165553
捐赠科研通 4456231
什么是DOI,文献DOI怎么找? 2444061
邀请新用户注册赠送积分活动 1435140
关于科研通互助平台的介绍 1412483