Transfer Learning Improves Unsupervised Assignment of ICD codes with Clinical Notes

计算机科学 学习迁移 人工智能 编码(社会科学) 无监督学习 机器学习 医学分类 源代码 数据建模 数据挖掘 数据库 数学 医学 统计 操作系统 护理部
作者
Amit Kumar,Souparna Das,Suman Roy
标识
DOI:10.1109/icdh60066.2023.00047
摘要

In healthcare industry, it is a standard practice to assign a set of International Classification of Diseases (ICD) to a clinical note (which can be a patient visit, a discharge summary and the like) as part of medical coding process mandated by medical care and patient billing. A supervised framework is adopted for most of the automated ICD coding assignment methods in which a subset of the clinical notes are a-priori labeled with ICD codes. But in lot of cases enough labeled texts are not available. These call for an unsupervised assignment of ICD codes. However, the quality of the data plays an important role in the performance of unsupervised coding, - low quality data leads to degradation of performance. In this paper, we explore a transfer learning approach for ICD coding using a combination of pre-training and supervised fine-tuning. We use a hierarchical BERT model comprising of a Bi-LSTM layered on top of BERT (this removes the restriction on the size of clinical texts)) as part of model architecture, and pre-train it on the total corpus (which include both labeled and unlabeled data). Next we transfer its weights to fine tune the model with labeled data (MIMIC data) in a supervised framework and then use this model to predict ICD code for unlabeled data using token similarity. This is the first use of using transfer learning in ICD prediction to our knowledge. Finally we show the efficacy of our transfer learning approach through rigorous experimentation, - there is 20% gain of sensitivity (recall) and 6% lift in specificity in ICD prediction compared to direct unsupervised prediction.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
斯文莺发布了新的文献求助10
刚刚
Reid完成签到 ,获得积分10
刚刚
kmelo发布了新的文献求助10
1秒前
淡然夏天关注了科研通微信公众号
1秒前
科研小呆瓜完成签到,获得积分20
1秒前
2秒前
2秒前
3秒前
3秒前
科研通AI6应助迷人书蝶采纳,获得10
4秒前
李健应助阿雷采纳,获得10
4秒前
科研通AI6应助xixi采纳,获得10
5秒前
linlinyilulvdeng完成签到,获得积分10
5秒前
科研通AI2S应助尹辉采纳,获得10
5秒前
爱听歌老1完成签到,获得积分10
5秒前
6秒前
沈若南应助灯灯采纳,获得10
6秒前
7秒前
7秒前
7秒前
111发布了新的文献求助10
7秒前
7秒前
7秒前
谨慎的灵完成签到 ,获得积分20
8秒前
8秒前
8秒前
8秒前
8秒前
8秒前
量子星尘发布了新的文献求助10
9秒前
勇敢牛牛发布了新的文献求助10
9秒前
9秒前
乐正飞风完成签到,获得积分20
10秒前
11秒前
11秒前
xueluxin完成签到 ,获得积分10
11秒前
11秒前
MKY发布了新的文献求助10
12秒前
12秒前
芮池发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5660809
求助须知:如何正确求助?哪些是违规求助? 4835652
关于积分的说明 15091990
捐赠科研通 4819406
什么是DOI,文献DOI怎么找? 2579257
邀请新用户注册赠送积分活动 1533773
关于科研通互助平台的介绍 1492565