Transfer Learning Improves Unsupervised Assignment of ICD codes with Clinical Notes

计算机科学 学习迁移 人工智能 编码(社会科学) 无监督学习 机器学习 医学分类 源代码 数据建模 数据挖掘 数据库 医学 统计 数学 护理部 操作系统
作者
Amit Kumar,Souparna Das,Suman Roy
标识
DOI:10.1109/icdh60066.2023.00047
摘要

In healthcare industry, it is a standard practice to assign a set of International Classification of Diseases (ICD) to a clinical note (which can be a patient visit, a discharge summary and the like) as part of medical coding process mandated by medical care and patient billing. A supervised framework is adopted for most of the automated ICD coding assignment methods in which a subset of the clinical notes are a-priori labeled with ICD codes. But in lot of cases enough labeled texts are not available. These call for an unsupervised assignment of ICD codes. However, the quality of the data plays an important role in the performance of unsupervised coding, - low quality data leads to degradation of performance. In this paper, we explore a transfer learning approach for ICD coding using a combination of pre-training and supervised fine-tuning. We use a hierarchical BERT model comprising of a Bi-LSTM layered on top of BERT (this removes the restriction on the size of clinical texts)) as part of model architecture, and pre-train it on the total corpus (which include both labeled and unlabeled data). Next we transfer its weights to fine tune the model with labeled data (MIMIC data) in a supervised framework and then use this model to predict ICD code for unlabeled data using token similarity. This is the first use of using transfer learning in ICD prediction to our knowledge. Finally we show the efficacy of our transfer learning approach through rigorous experimentation, - there is 20% gain of sensitivity (recall) and 6% lift in specificity in ICD prediction compared to direct unsupervised prediction.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
叶子完成签到,获得积分10
刚刚
飞快的盼易完成签到,获得积分10
1秒前
科研通AI6应助ZhangHongyu采纳,获得10
1秒前
打打应助雨筠采纳,获得10
1秒前
1秒前
房山芙完成签到,获得积分10
1秒前
1秒前
1秒前
zgnh完成签到,获得积分10
2秒前
阿北完成签到,获得积分10
2秒前
万能图书馆应助大气迎天采纳,获得10
2秒前
Eva完成签到,获得积分10
2秒前
合适否而非完成签到,获得积分10
2秒前
jkdzp发布了新的文献求助10
3秒前
走过的风发布了新的文献求助10
3秒前
4秒前
田博文应助xuxuxu采纳,获得10
4秒前
4秒前
在水一方应助波波采纳,获得10
4秒前
yanning完成签到,获得积分20
5秒前
5秒前
火星上的诗兰完成签到,获得积分10
5秒前
5秒前
5秒前
桐桐应助聪明萤采纳,获得10
5秒前
5秒前
爆米花应助冉柒采纳,获得10
6秒前
牛马婕完成签到,获得积分10
6秒前
vivre223发布了新的文献求助10
6秒前
文献求助发布了新的文献求助10
6秒前
JJJJJin发布了新的文献求助20
7秒前
jor666发布了新的文献求助20
7秒前
浮游应助sxk采纳,获得10
7秒前
小星星完成签到 ,获得积分10
8秒前
8秒前
傲娇的笑白完成签到 ,获得积分10
8秒前
CipherSage应助硝基采纳,获得10
8秒前
汪进辉_Will完成签到,获得积分10
9秒前
iwww发布了新的文献求助10
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5510526
求助须知:如何正确求助?哪些是违规求助? 4605168
关于积分的说明 14493221
捐赠科研通 4540370
什么是DOI,文献DOI怎么找? 2487953
邀请新用户注册赠送积分活动 1470219
关于科研通互助平台的介绍 1442645