Exact Decoding of a Sequentially Markov Coalescent Model in Genetics

溯祖理论 频数推理 计算机科学 推论 马尔可夫链 隐马尔可夫模型 马尔可夫模型 Python(编程语言) 群体遗传学 算法 贝叶斯概率 人口 贝叶斯推理 机器学习 人工智能 生物 遗传学 人口学 社会学 基因 系统发育树 操作系统
作者
Caleb Ki,Jonathan Terhorst
标识
DOI:10.1080/01621459.2023.2252570
摘要

AbstractIn statistical genetics, the sequentially Markov coalescent (SMC) is an important family of models for approximating the distribution of genetic variation data under complex evolutionary models. Methods based on SMC are widely used in genetics and evolutionary biology, with significant applications to genotype phasing and imputation, recombination rate estimation, and inferring population history. SMC allows for likelihood-based inference using hidden Markov models (HMMs), where the latent variable represents a genealogy. Because genealogies are continuous, while HMMs are discrete, SMC requires discretizing the space of trees in a way that is awkward and creates bias. In this work, we propose a method that circumvents this requirement, enabling SMC-based inference to be performed in the natural setting of a continuous state space. We derive fast, exact procedures for frequentist and Bayesian inference using SMC. Compared to existing methods, ours requires minimal user intervention or parameter tuning, no numerical optimization or E-M, and is faster and more accurate. Supplementary materials for this article are available online.Keywords: ChangepointCoalescentHidden Markov modelPopulation genetics Supplementary MaterialsIn the supplement we present supporting lemmas, proofs of the theorems, and additional plots and tables. (pdf)Disclosure StatementNo potential conflict of interest was reported by the author(s).Data Availability StatementAll of the data analyzed in this article are either simulated, or publicly available. A Python package implementing our method is available at https://terhorst.github.io/xsmc. Code which reproduces all of the figures and tables in this article is available at https://terhorst.github.io/xsmc/paper.Additional informationFundingThis research was supported by the National Science Foundation (grant number DMS-2052653, and a Graduate Research Fellowship), and the National Institute of General Medical Sciences of the National Institutes of Health under award number R35GM151145. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
感性的酬海完成签到,获得积分10
1秒前
王王的狗子完成签到 ,获得积分10
1秒前
innyjiang完成签到,获得积分10
3秒前
陆王牛马完成签到 ,获得积分10
4秒前
4秒前
Ava应助念念采纳,获得10
5秒前
LIAO完成签到,获得积分10
5秒前
迅速凝竹完成签到 ,获得积分10
7秒前
妮妮完成签到,获得积分10
8秒前
8秒前
哈哈哈完成签到,获得积分20
9秒前
快乐随心完成签到 ,获得积分10
10秒前
了一李完成签到 ,获得积分10
10秒前
fqk完成签到,获得积分10
10秒前
活泼新儿完成签到,获得积分10
10秒前
11秒前
老迟到的羊完成签到 ,获得积分10
11秒前
可爱的函函应助sl采纳,获得30
15秒前
CatC完成签到,获得积分10
15秒前
LIKO完成签到,获得积分10
15秒前
15秒前
15秒前
David发布了新的文献求助10
16秒前
16秒前
clock完成签到 ,获得积分10
16秒前
风中小懒虫完成签到,获得积分10
17秒前
cindy完成签到 ,获得积分10
18秒前
Tysonqu完成签到,获得积分10
18秒前
科研通AI2S应助Promise采纳,获得10
19秒前
20秒前
淡淡阁完成签到 ,获得积分10
20秒前
念念发布了新的文献求助10
20秒前
漂亮的秋天完成签到 ,获得积分10
22秒前
David完成签到,获得积分10
22秒前
Jason完成签到,获得积分10
22秒前
26秒前
27秒前
27秒前
YY完成签到,获得积分10
28秒前
调皮的凝旋完成签到,获得积分10
29秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038388
求助须知:如何正确求助?哪些是违规求助? 3576106
关于积分的说明 11374447
捐赠科研通 3305798
什么是DOI,文献DOI怎么找? 1819322
邀请新用户注册赠送积分活动 892672
科研通“疑难数据库(出版商)”最低求助积分说明 815029