Exact Decoding of a Sequentially Markov Coalescent Model in Genetics

溯祖理论 频数推理 计算机科学 推论 马尔可夫链 隐马尔可夫模型 马尔可夫模型 Python(编程语言) 群体遗传学 算法 贝叶斯概率 人口 贝叶斯推理 机器学习 人工智能 生物 遗传学 人口学 社会学 基因 系统发育树 操作系统
作者
Caleb Ki,Jonathan Terhorst
标识
DOI:10.1080/01621459.2023.2252570
摘要

AbstractIn statistical genetics, the sequentially Markov coalescent (SMC) is an important family of models for approximating the distribution of genetic variation data under complex evolutionary models. Methods based on SMC are widely used in genetics and evolutionary biology, with significant applications to genotype phasing and imputation, recombination rate estimation, and inferring population history. SMC allows for likelihood-based inference using hidden Markov models (HMMs), where the latent variable represents a genealogy. Because genealogies are continuous, while HMMs are discrete, SMC requires discretizing the space of trees in a way that is awkward and creates bias. In this work, we propose a method that circumvents this requirement, enabling SMC-based inference to be performed in the natural setting of a continuous state space. We derive fast, exact procedures for frequentist and Bayesian inference using SMC. Compared to existing methods, ours requires minimal user intervention or parameter tuning, no numerical optimization or E-M, and is faster and more accurate. Supplementary materials for this article are available online.Keywords: ChangepointCoalescentHidden Markov modelPopulation genetics Supplementary MaterialsIn the supplement we present supporting lemmas, proofs of the theorems, and additional plots and tables. (pdf)Disclosure StatementNo potential conflict of interest was reported by the author(s).Data Availability StatementAll of the data analyzed in this article are either simulated, or publicly available. A Python package implementing our method is available at https://terhorst.github.io/xsmc. Code which reproduces all of the figures and tables in this article is available at https://terhorst.github.io/xsmc/paper.Additional informationFundingThis research was supported by the National Science Foundation (grant number DMS-2052653, and a Graduate Research Fellowship), and the National Institute of General Medical Sciences of the National Institutes of Health under award number R35GM151145. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
路过银河发布了新的文献求助10
2秒前
3秒前
3秒前
liqian发布了新的文献求助10
4秒前
5秒前
JJJJJJJ发布了新的文献求助10
7秒前
小柒柒应助妍宝贝采纳,获得10
7秒前
7秒前
SciGPT应助连安阳采纳,获得10
7秒前
华子的五A替身完成签到,获得积分10
8秒前
小二郎应助我家不住隔壁采纳,获得10
9秒前
桐桐应助可爱的香菱采纳,获得10
9秒前
123发布了新的文献求助10
9秒前
六六完成签到 ,获得积分10
10秒前
沉静蘑菇完成签到,获得积分20
10秒前
德玛西亚完成签到,获得积分10
11秒前
达菲完成签到,获得积分10
12秒前
流白完成签到,获得积分10
12秒前
CodeCraft应助AteeqBaloch采纳,获得10
12秒前
liqian完成签到,获得积分10
12秒前
13秒前
Susan发布了新的文献求助10
14秒前
14秒前
14秒前
slx0410完成签到,获得积分10
15秒前
祎思发布了新的文献求助10
15秒前
领导范儿应助SONGER采纳,获得30
15秒前
18秒前
19秒前
20秒前
冷静远望完成签到,获得积分10
21秒前
白衣卿相发布了新的文献求助10
21秒前
我是老大应助长学采纳,获得10
24秒前
24秒前
yoo完成签到,获得积分10
27秒前
27秒前
28秒前
研友_nV25yn发布了新的文献求助10
28秒前
嘿嘿嘿!完成签到,获得积分10
28秒前
慕青应助dddyykkk采纳,获得10
28秒前
高分求助中
좌파는 어떻게 좌파가 됐나:한국 급진노동운동의 형성과 궤적 2500
Sustainability in Tides Chemistry 1500
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Cognitive linguistics critical concepts in linguistics 800
Threaded Harmony: A Sustainable Approach to Fashion 799
Livre et militantisme : La Cité éditeur 1958-1967 500
氟盐冷却高温堆非能动余热排出性能及安全分析研究 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3051374
求助须知:如何正确求助?哪些是违规求助? 2708662
关于积分的说明 7413751
捐赠科研通 2352869
什么是DOI,文献DOI怎么找? 1245378
科研通“疑难数据库(出版商)”最低求助积分说明 605633
版权声明 595829