亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Exact Decoding of a Sequentially Markov Coalescent Model in Genetics

溯祖理论 频数推理 计算机科学 推论 马尔可夫链 隐马尔可夫模型 马尔可夫模型 Python(编程语言) 群体遗传学 算法 贝叶斯概率 人口 贝叶斯推理 机器学习 人工智能 生物 遗传学 社会学 人口学 操作系统 系统发育树 基因
作者
Caleb Ki,Jonathan Terhorst
标识
DOI:10.1080/01621459.2023.2252570
摘要

AbstractIn statistical genetics, the sequentially Markov coalescent (SMC) is an important family of models for approximating the distribution of genetic variation data under complex evolutionary models. Methods based on SMC are widely used in genetics and evolutionary biology, with significant applications to genotype phasing and imputation, recombination rate estimation, and inferring population history. SMC allows for likelihood-based inference using hidden Markov models (HMMs), where the latent variable represents a genealogy. Because genealogies are continuous, while HMMs are discrete, SMC requires discretizing the space of trees in a way that is awkward and creates bias. In this work, we propose a method that circumvents this requirement, enabling SMC-based inference to be performed in the natural setting of a continuous state space. We derive fast, exact procedures for frequentist and Bayesian inference using SMC. Compared to existing methods, ours requires minimal user intervention or parameter tuning, no numerical optimization or E-M, and is faster and more accurate. Supplementary materials for this article are available online.Keywords: ChangepointCoalescentHidden Markov modelPopulation genetics Supplementary MaterialsIn the supplement we present supporting lemmas, proofs of the theorems, and additional plots and tables. (pdf)Disclosure StatementNo potential conflict of interest was reported by the author(s).Data Availability StatementAll of the data analyzed in this article are either simulated, or publicly available. A Python package implementing our method is available at https://terhorst.github.io/xsmc. Code which reproduces all of the figures and tables in this article is available at https://terhorst.github.io/xsmc/paper.Additional informationFundingThis research was supported by the National Science Foundation (grant number DMS-2052653, and a Graduate Research Fellowship), and the National Institute of General Medical Sciences of the National Institutes of Health under award number R35GM151145. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zqq完成签到,获得积分0
6秒前
7秒前
12秒前
朝云发布了新的文献求助50
14秒前
16秒前
BowieHuang应助科研通管家采纳,获得10
19秒前
shhoing应助科研通管家采纳,获得10
19秒前
善学以致用应助cjh采纳,获得50
26秒前
29秒前
34秒前
有魅力的问儿完成签到,获得积分10
35秒前
37秒前
cjh发布了新的文献求助50
42秒前
风中芷容完成签到 ,获得积分10
1分钟前
小马甲应助白华苍松采纳,获得10
1分钟前
1分钟前
2分钟前
django完成签到,获得积分10
2分钟前
最好完成签到,获得积分20
2分钟前
django发布了新的文献求助10
2分钟前
BowieHuang应助科研通管家采纳,获得10
2分钟前
星辰大海应助科研通管家采纳,获得10
2分钟前
自然完成签到,获得积分10
2分钟前
cjh发布了新的文献求助10
2分钟前
初晴完成签到 ,获得积分10
2分钟前
2分钟前
3分钟前
3分钟前
白斯特发布了新的文献求助10
3分钟前
3分钟前
TonyLee完成签到,获得积分10
3分钟前
kai完成签到,获得积分10
3分钟前
白斯特完成签到,获得积分10
3分钟前
平淡如天完成签到,获得积分10
3分钟前
自信的网络完成签到 ,获得积分10
3分钟前
achulw完成签到,获得积分10
3分钟前
Jayzie完成签到 ,获得积分10
3分钟前
flyinthesky完成签到,获得积分10
3分钟前
张晓祁完成签到,获得积分10
4分钟前
YY88687321发布了新的文献求助30
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5543150
求助须知:如何正确求助?哪些是违规求助? 4629324
关于积分的说明 14611100
捐赠科研通 4570588
什么是DOI,文献DOI怎么找? 2505813
邀请新用户注册赠送积分活动 1483084
关于科研通互助平台的介绍 1454396