Exact Decoding of a Sequentially Markov Coalescent Model in Genetics

溯祖理论 频数推理 计算机科学 推论 马尔可夫链 隐马尔可夫模型 马尔可夫模型 Python(编程语言) 群体遗传学 算法 贝叶斯概率 人口 贝叶斯推理 机器学习 人工智能 生物 遗传学 社会学 人口学 操作系统 系统发育树 基因
作者
Caleb Ki,Jonathan Terhorst
标识
DOI:10.1080/01621459.2023.2252570
摘要

AbstractIn statistical genetics, the sequentially Markov coalescent (SMC) is an important family of models for approximating the distribution of genetic variation data under complex evolutionary models. Methods based on SMC are widely used in genetics and evolutionary biology, with significant applications to genotype phasing and imputation, recombination rate estimation, and inferring population history. SMC allows for likelihood-based inference using hidden Markov models (HMMs), where the latent variable represents a genealogy. Because genealogies are continuous, while HMMs are discrete, SMC requires discretizing the space of trees in a way that is awkward and creates bias. In this work, we propose a method that circumvents this requirement, enabling SMC-based inference to be performed in the natural setting of a continuous state space. We derive fast, exact procedures for frequentist and Bayesian inference using SMC. Compared to existing methods, ours requires minimal user intervention or parameter tuning, no numerical optimization or E-M, and is faster and more accurate. Supplementary materials for this article are available online.Keywords: ChangepointCoalescentHidden Markov modelPopulation genetics Supplementary MaterialsIn the supplement we present supporting lemmas, proofs of the theorems, and additional plots and tables. (pdf)Disclosure StatementNo potential conflict of interest was reported by the author(s).Data Availability StatementAll of the data analyzed in this article are either simulated, or publicly available. A Python package implementing our method is available at https://terhorst.github.io/xsmc. Code which reproduces all of the figures and tables in this article is available at https://terhorst.github.io/xsmc/paper.Additional informationFundingThis research was supported by the National Science Foundation (grant number DMS-2052653, and a Graduate Research Fellowship), and the National Institute of General Medical Sciences of the National Institutes of Health under award number R35GM151145. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1秒前
无花果应助12234采纳,获得10
1秒前
only完成签到,获得积分10
1秒前
wangs完成签到,获得积分10
1秒前
情怀应助月关采纳,获得10
1秒前
斧王完成签到,获得积分10
1秒前
思源应助yqliu采纳,获得20
1秒前
1秒前
slimayw12发布了新的文献求助10
2秒前
青年才俊发布了新的文献求助10
2秒前
代号鸢尾发布了新的文献求助10
2秒前
2秒前
自由聪展完成签到,获得积分20
2秒前
英俊的铭应助chai采纳,获得10
3秒前
xxx完成签到,获得积分10
4秒前
DRHSK发布了新的文献求助10
4秒前
魏无羡完成签到,获得积分10
4秒前
斧王发布了新的文献求助10
4秒前
赤侯发布了新的文献求助10
5秒前
5秒前
Anatocism完成签到,获得积分10
5秒前
眯眯眼的太阳完成签到 ,获得积分10
5秒前
欣喜绍辉发布了新的文献求助10
6秒前
Lxx完成签到,获得积分10
6秒前
宋佳珍完成签到,获得积分10
6秒前
Lucas应助雾里青采纳,获得10
6秒前
研友_VZG7GZ应助xiaoE采纳,获得10
6秒前
快乐科研发布了新的文献求助10
6秒前
7秒前
爆米花应助111采纳,获得10
7秒前
xxx发布了新的文献求助10
7秒前
蓦然回首完成签到,获得积分10
7秒前
7秒前
和谐青柏应助slimayw12采纳,获得10
7秒前
7秒前
8秒前
8秒前
能干寻芹完成签到,获得积分10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5624579
求助须知:如何正确求助?哪些是违规求助? 4710376
关于积分的说明 14950345
捐赠科研通 4778512
什么是DOI,文献DOI怎么找? 2553318
邀请新用户注册赠送积分活动 1515240
关于科研通互助平台的介绍 1475577