Exact Decoding of a Sequentially Markov Coalescent Model in Genetics

溯祖理论 频数推理 计算机科学 推论 马尔可夫链 隐马尔可夫模型 马尔可夫模型 Python(编程语言) 群体遗传学 算法 贝叶斯概率 人口 贝叶斯推理 机器学习 人工智能 生物 遗传学 社会学 人口学 操作系统 系统发育树 基因
作者
Caleb Ki,Jonathan Terhorst
标识
DOI:10.1080/01621459.2023.2252570
摘要

AbstractIn statistical genetics, the sequentially Markov coalescent (SMC) is an important family of models for approximating the distribution of genetic variation data under complex evolutionary models. Methods based on SMC are widely used in genetics and evolutionary biology, with significant applications to genotype phasing and imputation, recombination rate estimation, and inferring population history. SMC allows for likelihood-based inference using hidden Markov models (HMMs), where the latent variable represents a genealogy. Because genealogies are continuous, while HMMs are discrete, SMC requires discretizing the space of trees in a way that is awkward and creates bias. In this work, we propose a method that circumvents this requirement, enabling SMC-based inference to be performed in the natural setting of a continuous state space. We derive fast, exact procedures for frequentist and Bayesian inference using SMC. Compared to existing methods, ours requires minimal user intervention or parameter tuning, no numerical optimization or E-M, and is faster and more accurate. Supplementary materials for this article are available online.Keywords: ChangepointCoalescentHidden Markov modelPopulation genetics Supplementary MaterialsIn the supplement we present supporting lemmas, proofs of the theorems, and additional plots and tables. (pdf)Disclosure StatementNo potential conflict of interest was reported by the author(s).Data Availability StatementAll of the data analyzed in this article are either simulated, or publicly available. A Python package implementing our method is available at https://terhorst.github.io/xsmc. Code which reproduces all of the figures and tables in this article is available at https://terhorst.github.io/xsmc/paper.Additional informationFundingThis research was supported by the National Science Foundation (grant number DMS-2052653, and a Graduate Research Fellowship), and the National Institute of General Medical Sciences of the National Institutes of Health under award number R35GM151145. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
六尺巷发布了新的文献求助10
刚刚
刚刚
威武鸽子发布了新的文献求助10
刚刚
香蕉觅云应助一锅粥采纳,获得30
刚刚
1秒前
1秒前
不舍天真完成签到,获得积分10
2秒前
王志杰发布了新的文献求助10
2秒前
我推黑川茜完成签到,获得积分10
2秒前
3秒前
3秒前
3秒前
木木康发布了新的文献求助10
3秒前
汉堡包应助崔嘉坤采纳,获得10
3秒前
4秒前
4秒前
所所应助123采纳,获得10
4秒前
潤沁发布了新的文献求助10
4秒前
Zlinco完成签到,获得积分10
5秒前
武穆杰发布了新的文献求助20
5秒前
浮游应助111采纳,获得10
5秒前
5秒前
5秒前
缓慢钢笔发布了新的文献求助10
6秒前
6秒前
6秒前
6秒前
天真不愁完成签到,获得积分10
6秒前
6秒前
零零二发布了新的文献求助10
7秒前
简让发布了新的文献求助30
7秒前
9秒前
123发布了新的文献求助10
9秒前
hana发布了新的文献求助10
9秒前
无尽发布了新的文献求助10
9秒前
9秒前
勤奋的绪完成签到,获得积分10
9秒前
温十一应助H1采纳,获得10
10秒前
10秒前
Ehrmantraut应助温十一采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
Using Genomics to Understand How Invaders May Adapt: A Marine Perspective 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5505946
求助须知:如何正确求助?哪些是违规求助? 4601465
关于积分的说明 14476523
捐赠科研通 4535397
什么是DOI,文献DOI怎么找? 2485351
邀请新用户注册赠送积分活动 1468337
关于科研通互助平台的介绍 1440869