Exact Decoding of a Sequentially Markov Coalescent Model in Genetics

溯祖理论 频数推理 计算机科学 推论 马尔可夫链 隐马尔可夫模型 马尔可夫模型 Python(编程语言) 群体遗传学 算法 贝叶斯概率 人口 贝叶斯推理 机器学习 人工智能 生物 遗传学 社会学 人口学 操作系统 系统发育树 基因
作者
Caleb Ki,Jonathan Terhorst
标识
DOI:10.1080/01621459.2023.2252570
摘要

AbstractIn statistical genetics, the sequentially Markov coalescent (SMC) is an important family of models for approximating the distribution of genetic variation data under complex evolutionary models. Methods based on SMC are widely used in genetics and evolutionary biology, with significant applications to genotype phasing and imputation, recombination rate estimation, and inferring population history. SMC allows for likelihood-based inference using hidden Markov models (HMMs), where the latent variable represents a genealogy. Because genealogies are continuous, while HMMs are discrete, SMC requires discretizing the space of trees in a way that is awkward and creates bias. In this work, we propose a method that circumvents this requirement, enabling SMC-based inference to be performed in the natural setting of a continuous state space. We derive fast, exact procedures for frequentist and Bayesian inference using SMC. Compared to existing methods, ours requires minimal user intervention or parameter tuning, no numerical optimization or E-M, and is faster and more accurate. Supplementary materials for this article are available online.Keywords: ChangepointCoalescentHidden Markov modelPopulation genetics Supplementary MaterialsIn the supplement we present supporting lemmas, proofs of the theorems, and additional plots and tables. (pdf)Disclosure StatementNo potential conflict of interest was reported by the author(s).Data Availability StatementAll of the data analyzed in this article are either simulated, or publicly available. A Python package implementing our method is available at https://terhorst.github.io/xsmc. Code which reproduces all of the figures and tables in this article is available at https://terhorst.github.io/xsmc/paper.Additional informationFundingThis research was supported by the National Science Foundation (grant number DMS-2052653, and a Graduate Research Fellowship), and the National Institute of General Medical Sciences of the National Institutes of Health under award number R35GM151145. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
morning完成签到,获得积分10
1秒前
ykq发布了新的文献求助10
2秒前
赵梦妍完成签到,获得积分10
2秒前
kaia发布了新的文献求助10
2秒前
勇敢的心完成签到,获得积分10
2秒前
4秒前
4秒前
英俊的铭应助经小夏采纳,获得10
4秒前
理想发布了新的文献求助10
4秒前
NLNL发布了新的文献求助10
5秒前
Zqs完成签到,获得积分10
5秒前
laruijoint完成签到,获得积分10
5秒前
6秒前
annafan完成签到,获得积分10
7秒前
7秒前
ykq完成签到,获得积分20
7秒前
7秒前
hs完成签到,获得积分10
7秒前
薛之谦的猫应助黎书禾采纳,获得10
8秒前
9秒前
隐形曼青应助olekravchenko采纳,获得10
9秒前
10秒前
MAK完成签到,获得积分10
10秒前
彩色芷完成签到,获得积分10
11秒前
低空飞行发布了新的文献求助10
11秒前
Greyson完成签到 ,获得积分10
11秒前
静候佳音完成签到 ,获得积分10
12秒前
dxm发布了新的文献求助10
13秒前
dxszing完成签到 ,获得积分10
13秒前
相约在天边完成签到,获得积分10
13秒前
jialin发布了新的文献求助10
14秒前
思源应助刘奇采纳,获得10
14秒前
coast发布了新的文献求助10
14秒前
理想完成签到,获得积分10
15秒前
15秒前
17秒前
polarisier发布了新的文献求助10
17秒前
18秒前
19秒前
慕青应助dxm采纳,获得10
19秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5342879
求助须知:如何正确求助?哪些是违规求助? 4478579
关于积分的说明 13940083
捐赠科研通 4375429
什么是DOI,文献DOI怎么找? 2404055
邀请新用户注册赠送积分活动 1396617
关于科研通互助平台的介绍 1368930