亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

GMHANN: A Novel Traffic Flow Prediction Method for Transportation Management Based on Spatial-Temporal Graph Modeling

计算机科学 流量(计算机网络) 数据挖掘 图形 智能交通系统 交叉口(航空) 循环神经网络 数据建模 实时计算 人工智能 人工神经网络 工程类 运输工程 理论计算机科学 计算机安全 数据库
作者
Qing Wang,Weiping Liu,Wang Xiu,Xinghong Chen,Guannan Chen,Qingxiang Wu
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:25 (1): 386-401 被引量:2
标识
DOI:10.1109/tits.2023.3306559
摘要

Traffic flow prediction significantly affects the intelligent transportation for digitized urban transportation management and urban traffic control. Considering the complexity and strong non-linearity shown by traffic flow data, the establishment of model regarding spatial correlations as well as time dynamics can remarkably help to accurately predict traffic flow. A lot of current methods are mainly focused on using the historical time series information of observations to extract sequence features. Such forecasting will cause the lack of information and lead to poor accuracy of the forecast results. Although some studies applied spatial-temporal information, but they are not very accurate. In network-based problems, we would consider the constraint of road networks. Specifically, intersection flows, road speed and travel time are related to road networks. Also, they restrict the long-term prediction of traffic flow. For addressing above issues, a graph multi-head attention neural network (GMHANN) is proposed for the purpose of traffic flow prediction. In design, the GMHANN has an encoder-decoder structure. By the encoder, the data are compressed into a hidden space representation, which, relying on the decoder, is reconstructed as output. Furthermore, we put forward a novel gated recurrent unit (GRU) module (AGRU) based on multi-head attention for the effective extraction of the spatial and temporal features exhibited by traffic flow data. Other state-of-the-art methods are employed for evaluating four public datasets, which reveals that our proposed method outperforms others.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
juan完成签到 ,获得积分10
41秒前
学术小垃圾完成签到,获得积分10
55秒前
叁月二完成签到 ,获得积分10
59秒前
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
大模型应助科研通管家采纳,获得10
1分钟前
xingsixs完成签到 ,获得积分10
1分钟前
AprilLeung完成签到 ,获得积分10
2分钟前
3分钟前
深情安青应助科研通管家采纳,获得10
3分钟前
迷茫的一代完成签到,获得积分10
4分钟前
魔笛的云宝完成签到 ,获得积分10
4分钟前
www完成签到,获得积分10
4分钟前
5分钟前
NexusExplorer应助科研通管家采纳,获得10
5分钟前
Akitten发布了新的文献求助10
6分钟前
啥时候吃火锅完成签到 ,获得积分0
7分钟前
上官若男应助科研通管家采纳,获得30
7分钟前
斯文败类应助科研通管家采纳,获得10
7分钟前
李爱国应助科研通管家采纳,获得10
7分钟前
科研通AI2S应助科研通管家采纳,获得10
7分钟前
赘婿应助科研通管家采纳,获得10
7分钟前
田様应助精明晓刚采纳,获得10
7分钟前
8分钟前
精明晓刚发布了新的文献求助10
8分钟前
科研通AI2S应助科研通管家采纳,获得10
9分钟前
coolplex完成签到 ,获得积分10
9分钟前
wwe完成签到,获得积分10
10分钟前
貔貅完成签到 ,获得积分10
10分钟前
yindi1991完成签到 ,获得积分10
12分钟前
hgl完成签到,获得积分10
13分钟前
13分钟前
科研通AI2S应助科研通管家采纳,获得10
13分钟前
13分钟前
华仔应助精明晓刚采纳,获得10
13分钟前
14分钟前
14分钟前
精明晓刚发布了新的文献求助10
14分钟前
糖伯虎完成签到 ,获得积分10
15分钟前
在水一方应助科研通管家采纳,获得10
15分钟前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3990423
求助须知:如何正确求助?哪些是违规求助? 3532158
关于积分的说明 11256513
捐赠科研通 3271046
什么是DOI,文献DOI怎么找? 1805207
邀请新用户注册赠送积分活动 882302
科研通“疑难数据库(出版商)”最低求助积分说明 809234