清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

GMHANN: A Novel Traffic Flow Prediction Method for Transportation Management Based on Spatial-Temporal Graph Modeling

计算机科学 流量(计算机网络) 数据挖掘 图形 智能交通系统 交叉口(航空) 循环神经网络 数据建模 实时计算 人工智能 人工神经网络 工程类 运输工程 理论计算机科学 计算机安全 数据库
作者
Qing Wang,Weiping Liu,Wang Xiu,Xinghong Chen,Guannan Chen,Qingxiang Wu
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:25 (1): 386-401 被引量:2
标识
DOI:10.1109/tits.2023.3306559
摘要

Traffic flow prediction significantly affects the intelligent transportation for digitized urban transportation management and urban traffic control. Considering the complexity and strong non-linearity shown by traffic flow data, the establishment of model regarding spatial correlations as well as time dynamics can remarkably help to accurately predict traffic flow. A lot of current methods are mainly focused on using the historical time series information of observations to extract sequence features. Such forecasting will cause the lack of information and lead to poor accuracy of the forecast results. Although some studies applied spatial-temporal information, but they are not very accurate. In network-based problems, we would consider the constraint of road networks. Specifically, intersection flows, road speed and travel time are related to road networks. Also, they restrict the long-term prediction of traffic flow. For addressing above issues, a graph multi-head attention neural network (GMHANN) is proposed for the purpose of traffic flow prediction. In design, the GMHANN has an encoder-decoder structure. By the encoder, the data are compressed into a hidden space representation, which, relying on the decoder, is reconstructed as output. Furthermore, we put forward a novel gated recurrent unit (GRU) module (AGRU) based on multi-head attention for the effective extraction of the spatial and temporal features exhibited by traffic flow data. Other state-of-the-art methods are employed for evaluating four public datasets, which reveals that our proposed method outperforms others.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
gszy1975完成签到,获得积分10
48秒前
Gryphon应助科研通管家采纳,获得10
1分钟前
轻松幼南完成签到 ,获得积分10
2分钟前
shhoing应助科研通管家采纳,获得10
3分钟前
npknpk完成签到,获得积分10
3分钟前
Orange应助Ajay采纳,获得30
3分钟前
雪山飞龙完成签到,获得积分10
4分钟前
shhoing应助科研通管家采纳,获得10
5分钟前
Ajay完成签到 ,获得积分10
5分钟前
Klaus完成签到 ,获得积分10
5分钟前
胖小羊完成签到 ,获得积分10
5分钟前
方白秋完成签到,获得积分0
6分钟前
6分钟前
Ajay发布了新的文献求助30
6分钟前
CipherSage应助丽海张采纳,获得30
6分钟前
赵一完成签到 ,获得积分10
6分钟前
7分钟前
Prometheusss发布了新的文献求助10
7分钟前
丽海张发布了新的文献求助30
7分钟前
科研通AI2S应助科研通管家采纳,获得10
7分钟前
shhoing应助科研通管家采纳,获得10
7分钟前
英姑应助科研通管家采纳,获得10
7分钟前
zsmj23完成签到 ,获得积分0
7分钟前
文静身边充满小确幸完成签到 ,获得积分10
7分钟前
7分钟前
Prometheusss发布了新的文献求助10
7分钟前
Prometheusss完成签到,获得积分10
8分钟前
8分钟前
深海理疗发布了新的文献求助10
8分钟前
al完成签到 ,获得积分0
8分钟前
Prometheusss发布了新的文献求助10
8分钟前
下文献的蜉蝣完成签到 ,获得积分10
9分钟前
shhoing应助科研通管家采纳,获得10
9分钟前
shhoing应助科研通管家采纳,获得10
9分钟前
科研通AI2S应助科研通管家采纳,获得10
9分钟前
洁净百川完成签到 ,获得积分10
9分钟前
9分钟前
Prometheusss发布了新的文献求助10
9分钟前
fufufu123完成签到 ,获得积分10
10分钟前
nuoberry发布了新的文献求助30
10分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
King Tyrant 600
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5561583
求助须知:如何正确求助?哪些是违规求助? 4646662
关于积分的说明 14678756
捐赠科研通 4588002
什么是DOI,文献DOI怎么找? 2517261
邀请新用户注册赠送积分活动 1490549
关于科研通互助平台的介绍 1461583