GMHANN: A Novel Traffic Flow Prediction Method for Transportation Management Based on Spatial-Temporal Graph Modeling

计算机科学 流量(计算机网络) 数据挖掘 图形 智能交通系统 交叉口(航空) 循环神经网络 数据建模 实时计算 人工智能 人工神经网络 工程类 运输工程 理论计算机科学 计算机安全 数据库
作者
Qing Wang,Weiping Liu,Wang Xiu,Xinghong Chen,Guannan Chen,Qingxiang Wu
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:25 (1): 386-401 被引量:2
标识
DOI:10.1109/tits.2023.3306559
摘要

Traffic flow prediction significantly affects the intelligent transportation for digitized urban transportation management and urban traffic control. Considering the complexity and strong non-linearity shown by traffic flow data, the establishment of model regarding spatial correlations as well as time dynamics can remarkably help to accurately predict traffic flow. A lot of current methods are mainly focused on using the historical time series information of observations to extract sequence features. Such forecasting will cause the lack of information and lead to poor accuracy of the forecast results. Although some studies applied spatial-temporal information, but they are not very accurate. In network-based problems, we would consider the constraint of road networks. Specifically, intersection flows, road speed and travel time are related to road networks. Also, they restrict the long-term prediction of traffic flow. For addressing above issues, a graph multi-head attention neural network (GMHANN) is proposed for the purpose of traffic flow prediction. In design, the GMHANN has an encoder-decoder structure. By the encoder, the data are compressed into a hidden space representation, which, relying on the decoder, is reconstructed as output. Furthermore, we put forward a novel gated recurrent unit (GRU) module (AGRU) based on multi-head attention for the effective extraction of the spatial and temporal features exhibited by traffic flow data. Other state-of-the-art methods are employed for evaluating four public datasets, which reveals that our proposed method outperforms others.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷炫迎波完成签到,获得积分10
1秒前
沐晨浠完成签到,获得积分10
1秒前
tcf完成签到,获得积分10
2秒前
MrSong完成签到,获得积分10
3秒前
豆浆来点蒜泥完成签到,获得积分0
4秒前
6秒前
7秒前
可燃冰完成签到,获得积分10
8秒前
8秒前
黄石完成签到,获得积分10
8秒前
Justtry完成签到,获得积分10
8秒前
Sunshine完成签到 ,获得积分10
9秒前
虚心的仙人掌完成签到,获得积分0
10秒前
信远征完成签到,获得积分10
10秒前
落尘完成签到,获得积分10
11秒前
务实小鸽子完成签到 ,获得积分10
12秒前
12秒前
王小磊发布了新的文献求助10
12秒前
Iwan完成签到,获得积分10
12秒前
小蘑菇应助LIUYONG采纳,获得10
16秒前
大气的山彤完成签到,获得积分10
17秒前
苏木发布了新的文献求助10
17秒前
Yep0672完成签到,获得积分10
17秒前
小王发布了新的文献求助10
18秒前
18秒前
19秒前
19秒前
19秒前
粥粥完成签到,获得积分10
20秒前
21秒前
小宋完成签到,获得积分10
21秒前
干净的芮完成签到,获得积分10
21秒前
peace完成签到,获得积分10
21秒前
明天会更美好完成签到,获得积分10
23秒前
初七完成签到,获得积分20
23秒前
弎夜完成签到,获得积分10
24秒前
O-M175发布了新的文献求助10
24秒前
24秒前
春春完成签到,获得积分10
24秒前
zasideler完成签到,获得积分10
25秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038388
求助须知:如何正确求助?哪些是违规求助? 3576106
关于积分的说明 11374447
捐赠科研通 3305798
什么是DOI,文献DOI怎么找? 1819322
邀请新用户注册赠送积分活动 892672
科研通“疑难数据库(出版商)”最低求助积分说明 815029