GMHANN: A Novel Traffic Flow Prediction Method for Transportation Management Based on Spatial-Temporal Graph Modeling

计算机科学 流量(计算机网络) 数据挖掘 图形 智能交通系统 交叉口(航空) 循环神经网络 数据建模 实时计算 人工智能 人工神经网络 工程类 运输工程 理论计算机科学 计算机安全 数据库
作者
Qing Wang,Weiping Liu,Wang Xiu,Xinghong Chen,Guannan Chen,Qingxiang Wu
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:25 (1): 386-401 被引量:2
标识
DOI:10.1109/tits.2023.3306559
摘要

Traffic flow prediction significantly affects the intelligent transportation for digitized urban transportation management and urban traffic control. Considering the complexity and strong non-linearity shown by traffic flow data, the establishment of model regarding spatial correlations as well as time dynamics can remarkably help to accurately predict traffic flow. A lot of current methods are mainly focused on using the historical time series information of observations to extract sequence features. Such forecasting will cause the lack of information and lead to poor accuracy of the forecast results. Although some studies applied spatial-temporal information, but they are not very accurate. In network-based problems, we would consider the constraint of road networks. Specifically, intersection flows, road speed and travel time are related to road networks. Also, they restrict the long-term prediction of traffic flow. For addressing above issues, a graph multi-head attention neural network (GMHANN) is proposed for the purpose of traffic flow prediction. In design, the GMHANN has an encoder-decoder structure. By the encoder, the data are compressed into a hidden space representation, which, relying on the decoder, is reconstructed as output. Furthermore, we put forward a novel gated recurrent unit (GRU) module (AGRU) based on multi-head attention for the effective extraction of the spatial and temporal features exhibited by traffic flow data. Other state-of-the-art methods are employed for evaluating four public datasets, which reveals that our proposed method outperforms others.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SC武完成签到,获得积分10
刚刚
俏皮诺言完成签到,获得积分10
1秒前
苍蓝所栖完成签到 ,获得积分10
1秒前
最美夕阳红完成签到,获得积分10
2秒前
结实的立诚完成签到,获得积分10
3秒前
一手抓爆乌云完成签到,获得积分10
3秒前
科研通AI2S应助隐形白开水采纳,获得10
3秒前
eth完成签到,获得积分10
4秒前
善学以致用应助yzr01采纳,获得10
5秒前
执着的三问完成签到 ,获得积分10
6秒前
天涯明月完成签到,获得积分10
10秒前
汉堡包应助医路有你采纳,获得10
13秒前
月潮共生完成签到 ,获得积分10
13秒前
yy完成签到,获得积分10
14秒前
池暮江吟春完成签到,获得积分0
15秒前
17秒前
雾潋关注了科研通微信公众号
18秒前
ljx完成签到 ,获得积分10
19秒前
风城玫瑰发布了新的文献求助10
22秒前
yongzaizhuigan完成签到,获得积分0
22秒前
23秒前
张铁柱完成签到,获得积分10
23秒前
洁净的酬海完成签到 ,获得积分10
25秒前
田心雨完成签到 ,获得积分10
25秒前
ZZ0110Z完成签到 ,获得积分10
26秒前
医路有你完成签到,获得积分10
26秒前
26秒前
风城玫瑰完成签到,获得积分10
27秒前
Zurlliant完成签到,获得积分10
27秒前
嘻嘻完成签到 ,获得积分10
27秒前
beibei完成签到,获得积分10
29秒前
医路有你发布了新的文献求助10
29秒前
Hyc28441711完成签到,获得积分10
29秒前
爱撒娇的长颈鹿完成签到,获得积分10
32秒前
孟惜儿完成签到,获得积分10
34秒前
34秒前
笨笨的怜南完成签到,获得积分10
35秒前
Accepted完成签到,获得积分10
37秒前
38秒前
Aurora.H完成签到,获得积分10
38秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137115
求助须知:如何正确求助?哪些是违规求助? 2788086
关于积分的说明 7784551
捐赠科研通 2444121
什么是DOI,文献DOI怎么找? 1299763
科研通“疑难数据库(出版商)”最低求助积分说明 625574
版权声明 601011