Prediction of CO2 emission peak and reduction potential of Beijing-Tianjin-Hebei urban agglomeration

城市群 北京 环境科学 蒙特卡罗方法 估计 集聚经济 地理 统计 中国 数学 工程类 经济地理学 经济 经济增长 考古 系统工程
作者
Jiao Ren,Hui Bai,Shunchang Zhong,Zhifang Wu
出处
期刊:Journal of Cleaner Production [Elsevier BV]
卷期号:425: 138945-138945 被引量:13
标识
DOI:10.1016/j.jclepro.2023.138945
摘要

Forecasting the future emission trajectories and the relating sensitive driving factors of emissions for cities is of great significance to formulate realizable CO2 mitigation policies. To proceed the forecasting, studies on peak prediction and quantification of reduction potential at the city level are essential. However, the studies in the area are very limited. Selecting the Beijing-Tianjin-Hebei urban agglomeration (BTH) as the study region, this paper aims to contribute to the research area and provides implications for other cities or urban agglomerations. The Kaya identity and multi-scenario simulation were employed to predict the dynamic evolution pathways of CO2 emissions from 2021 to 2035 and explore the differential CO2 peak time, peak value, and reduction potential for 13 cities in BTH. Monte Carlo simulation, Mann-Kendall trend test and Sen's slope estimation method are jointly used to reduce uncertainties in estimation. The Monte Carlo simulation results show that most cities in BTH have already reached their CO2 emissions peak, while Tianjin, Langfang, Cangzhou and Tangshan are expected to reach their peaks between 2025 and 2030. Among them, 5 and 8 cities have the risk of not reaching their peak before 2035 in the high consumption scenario (HCS) and extensive development scenario (EDS) respectively. Comparative analysis reveals that low-carbon scenario (LCS) and sustainable development scenario (SDS) have significant effects on emissions reductions. The top three cities in terms of accumulative emission reduction in 2021–2035 are Tianjin, Tangshan and Cangzhou, estimated as 117.82–250.75 Mt CO2 in LCS and 217.77–454.10 Mt CO2 in SDS, respectively. The results of sensitivity analysis reveal that the most critical driver of CO2 emissions in Beijing is population, while that is GDP per capita for Tianjin. Langfang and Hengshui showed the highest sensitivity to energy intensity. Accordingly, these cities have differentiated concerns and priorities to achieve their carbon peak goal as scheduled.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
冬烜完成签到 ,获得积分10
刚刚
Zard发布了新的文献求助10
1秒前
liu123456完成签到,获得积分10
1秒前
屎味烤地瓜完成签到,获得积分10
1秒前
852应助荒野风采纳,获得10
2秒前
5秒前
芳泽发布了新的文献求助10
5秒前
su发布了新的文献求助10
6秒前
Milou完成签到,获得积分10
7秒前
7秒前
老阎应助科研通管家采纳,获得30
7秒前
orixero应助科研通管家采纳,获得10
8秒前
汉堡包应助科研通管家采纳,获得10
8秒前
8秒前
小马甲应助科研通管家采纳,获得10
8秒前
科研白菜白完成签到,获得积分10
8秒前
慕青应助科研通管家采纳,获得10
8秒前
大模型应助科研通管家采纳,获得10
8秒前
无花果应助科研通管家采纳,获得10
8秒前
英俊的铭应助科研通管家采纳,获得20
8秒前
8秒前
SciGPT应助科研通管家采纳,获得10
8秒前
科研乞丐应助科研通管家采纳,获得20
8秒前
jjj应助科研通管家采纳,获得20
8秒前
小二郎应助科研通管家采纳,获得10
8秒前
小马甲应助科研通管家采纳,获得30
8秒前
桐桐应助科研通管家采纳,获得10
8秒前
ding应助科研通管家采纳,获得10
8秒前
8秒前
烟花应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
8秒前
充电宝应助科研通管家采纳,获得10
8秒前
zpt完成签到,获得积分10
9秒前
爱学习的瑞瑞子完成签到 ,获得积分10
9秒前
pauchiu完成签到,获得积分0
9秒前
jay完成签到,获得积分10
9秒前
10秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038619
求助须知:如何正确求助?哪些是违规求助? 3576294
关于积分的说明 11375058
捐赠科研通 3306084
什么是DOI,文献DOI怎么找? 1819374
邀请新用户注册赠送积分活动 892698
科研通“疑难数据库(出版商)”最低求助积分说明 815066