DCEL: Deep Cross-modal Evidential Learning for Text-Based Person Retrieval

计算机科学 人工智能 情态动词 变化(天文学) 相似性(几何) 班级(哲学) 一般化 机器学习 深度学习 模式识别(心理学) 图像(数学) 数学 物理 数学分析 天体物理学 化学 高分子化学
作者
Shenshen Li,Xing Xu,Yang Yang,Fumin Shen,Yijun Mo,Y. Li,Heng Tao Shen
标识
DOI:10.1145/3581783.3612244
摘要

Text-based person retrieval aims at searching for a pedestrian image from multiple candidates with textual descriptions. It is challenging due to uncertain cross-modal alignments caused by the large intra-class variations. To address the challenge, most existing approaches rely on various attention mechanisms and auxiliary information, yet still struggle with the uncertain cross-modal alignments arising from significant intra-class variation, leading to coarse retrieval results. To this end, we propose a novel framework termed Deep Cross-modal Evidential Learning (DCEL), which deploys evidential deep learning to consider the cross-modal alignment uncertainty. Our DCEL model comprises three components: (1) Bidirectional Evidential Learning, which models alignment uncertainty to measure and mitigate the influence of large intra-class variation; (2) Multi-level Semantic Alignment, which leverages a proposed Semantic Filtration module and image-text similarity distribution to facilitate cross-modal alignments; (3) Cross-modal Relation Learning, which reasons about latent correspondences between multi-level tokens of image and text. Finally, we integrate the advantages of the three proposed components to enhance the model to achieve reliable cross-modal alignments. Our DCEL method consistently outperforms more than ten state-of-the-art methods in supervised, weakly supervised, and domain generalization settings on three benchmarks: CUHK-PEDES, ICFG-PEDES, and RSTPReid.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
Zoe完成签到,获得积分10
1秒前
pxy发布了新的文献求助10
4秒前
潇洒飞丹发布了新的文献求助10
5秒前
5秒前
Ava应助科研通管家采纳,获得10
6秒前
小二郎应助科研通管家采纳,获得10
6秒前
LaTeXer应助科研通管家采纳,获得200
6秒前
小蘑菇应助科研通管家采纳,获得10
6秒前
Orange应助科研通管家采纳,获得10
6秒前
上官若男应助科研通管家采纳,获得10
6秒前
思源应助琳琳采纳,获得10
6秒前
所所应助科研通管家采纳,获得10
6秒前
6秒前
打打应助科研通管家采纳,获得10
6秒前
6秒前
大气乐天完成签到,获得积分10
7秒前
整齐芷文完成签到,获得积分10
7秒前
7秒前
难过的一一完成签到,获得积分10
9秒前
9秒前
9秒前
10秒前
淡淡夕阳发布了新的文献求助10
11秒前
11秒前
12秒前
希望天下0贩的0应助lxl1996采纳,获得10
13秒前
Yukaze发布了新的文献求助10
13秒前
深情安青应助ww采纳,获得10
13秒前
lf-leo完成签到,获得积分10
14秒前
量子星尘发布了新的文献求助10
16秒前
开放友灵发布了新的文献求助30
17秒前
在水一方应助家伟采纳,获得10
18秒前
yuxiaobolab发布了新的文献求助10
18秒前
Chloe应助牛牛眉目采纳,获得10
18秒前
19秒前
19秒前
传奇3应助Yukaze采纳,获得10
19秒前
852应助WANGCHU采纳,获得10
20秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956275
求助须知:如何正确求助?哪些是违规求助? 3502464
关于积分的说明 11107805
捐赠科研通 3233133
什么是DOI,文献DOI怎么找? 1787170
邀请新用户注册赠送积分活动 870498
科研通“疑难数据库(出版商)”最低求助积分说明 802093