CTCP: Cross Transformer and CNN for Pansharpening

计算机科学 人工智能 模式识别(心理学) 特征提取 卷积神经网络 多光谱图像 全色胶片 图像分辨率 计算机视觉 特征(语言学) 变压器 工程类 电压 哲学 语言学 电气工程
作者
Zhao Su,Yong Yang,Shuying Huang,Weiguo Wan,Wei Tu,Hangyuan Lu,Changjie Chen
标识
DOI:10.1145/3581783.3613815
摘要

Pansharpening is to fuse a high-resolution panchromatic (PAN) image with a low-resolution multispectral (LRMS) image to obtain an enhanced LRMS image with high spectral and spatial resolution. The current Transformer-based pansharpening methods neglect the interaction between the extracted long- and short-range features, resulting in spectral and spatial distortion in the fusion results. To address this issue, a novel cross Transformer and convolutional neural network (CNN) for pansharpening (CTCP) is proposed to achieve better fusion results by designing a cross mechanism, which can enhance the interaction between long- and short-range features. First, a dual branch feature extraction module (DBFEM) is constructed to extract the features from the LRMS and PAN images, respectively, reducing the aliasing of the two image features. In the DBFEM, to improve the feature representation ability of the network, a cross long-short-range feature module (CLSFM) is designed by combining the feature learning capabilities of Transformer and CNN via the cross mechanism, which achieves the integration of long-short-range features. Then, to improve the ability of spectral feature representation, a spectral feature enhancement fusion module (SFEFM) based on a frequency channel attention is constructed to realize feature fusion. Finally, the shallow features from the PAN image are reused to provide detail features, which are integrated with the fused features to obtain the final pansharpened results. To the best of our knowledge, this is the first attempt to introduce the cross mechanism between Transformer and CNN in pansharpening field. Numerous experiments show that our CTCP outperforms some state-of-the-art (SOTA) approaches both subjectively and objectively. The source code will be released at https://github.com/zhsu99/CTCP.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一澡干菜发布了新的文献求助10
刚刚
刚刚
orixero应助干净若灵采纳,获得10
1秒前
2秒前
zsq发布了新的文献求助10
2秒前
2秒前
wzg666发布了新的文献求助10
2秒前
mmol发布了新的文献求助10
3秒前
如风随水发布了新的文献求助10
3秒前
阿六完成签到,获得积分20
4秒前
想人陪的万言完成签到,获得积分10
4秒前
5秒前
科研通AI6应助liao采纳,获得10
5秒前
yaozi发布了新的文献求助10
6秒前
真实的一鸣完成签到,获得积分10
6秒前
6秒前
DDhappy完成签到,获得积分10
7秒前
8秒前
8秒前
Owen应助水123采纳,获得10
8秒前
8秒前
8秒前
9秒前
9秒前
我是老大应助mmol采纳,获得10
9秒前
wanci应助嘻嘻采纳,获得10
10秒前
桐桐应助勤奋好学的欧采纳,获得10
10秒前
mzn6664发布了新的文献求助10
11秒前
happiness发布了新的文献求助10
11秒前
11秒前
苹果初阳发布了新的文献求助10
11秒前
Li发布了新的文献求助10
12秒前
yaozi完成签到,获得积分20
12秒前
Hello应助BK采纳,获得10
12秒前
蒋若风发布了新的文献求助10
13秒前
13秒前
从容的盼晴完成签到,获得积分10
13秒前
14秒前
猪米妮发布了新的文献求助10
14秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5601210
求助须知:如何正确求助?哪些是违规求助? 4686646
关于积分的说明 14845466
捐赠科研通 4679924
什么是DOI,文献DOI怎么找? 2539214
邀请新用户注册赠送积分活动 1506091
关于科研通互助平台的介绍 1471266