CTCP: Cross Transformer and CNN for Pansharpening

计算机科学 人工智能 模式识别(心理学) 特征提取 卷积神经网络 多光谱图像 全色胶片 图像分辨率 计算机视觉 特征(语言学) 变压器 工程类 电压 哲学 语言学 电气工程
作者
Zhao Su,Yong Yang,Shuying Huang,Weiguo Wan,Wei Tu,Hangyuan Lu,Changjie Chen
标识
DOI:10.1145/3581783.3613815
摘要

Pansharpening is to fuse a high-resolution panchromatic (PAN) image with a low-resolution multispectral (LRMS) image to obtain an enhanced LRMS image with high spectral and spatial resolution. The current Transformer-based pansharpening methods neglect the interaction between the extracted long- and short-range features, resulting in spectral and spatial distortion in the fusion results. To address this issue, a novel cross Transformer and convolutional neural network (CNN) for pansharpening (CTCP) is proposed to achieve better fusion results by designing a cross mechanism, which can enhance the interaction between long- and short-range features. First, a dual branch feature extraction module (DBFEM) is constructed to extract the features from the LRMS and PAN images, respectively, reducing the aliasing of the two image features. In the DBFEM, to improve the feature representation ability of the network, a cross long-short-range feature module (CLSFM) is designed by combining the feature learning capabilities of Transformer and CNN via the cross mechanism, which achieves the integration of long-short-range features. Then, to improve the ability of spectral feature representation, a spectral feature enhancement fusion module (SFEFM) based on a frequency channel attention is constructed to realize feature fusion. Finally, the shallow features from the PAN image are reused to provide detail features, which are integrated with the fused features to obtain the final pansharpened results. To the best of our knowledge, this is the first attempt to introduce the cross mechanism between Transformer and CNN in pansharpening field. Numerous experiments show that our CTCP outperforms some state-of-the-art (SOTA) approaches both subjectively and objectively. The source code will be released at https://github.com/zhsu99/CTCP.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Janet_Jing完成签到 ,获得积分10
1秒前
李惊鸿完成签到,获得积分10
1秒前
SunJc完成签到,获得积分10
2秒前
3秒前
4秒前
彭于晏应助kkk采纳,获得10
4秒前
7秒前
慕子完成签到 ,获得积分10
8秒前
8秒前
8秒前
共享精神应助科研通管家采纳,获得10
9秒前
局内人发布了新的文献求助10
9秒前
搜集达人应助科研通管家采纳,获得10
9秒前
方赫然应助科研通管家采纳,获得10
9秒前
Ava应助科研通管家采纳,获得10
9秒前
Lucas应助科研通管家采纳,获得10
9秒前
桐桐应助Shirleyjxuan采纳,获得10
9秒前
充电宝应助科研通管家采纳,获得10
9秒前
光亮的成风完成签到,获得积分10
10秒前
小周完成签到,获得积分10
11秒前
11秒前
Lyuhng+1完成签到 ,获得积分10
12秒前
中药中医科研狗1123完成签到,获得积分10
13秒前
14秒前
刻苦的安白完成签到,获得积分10
15秒前
赫连立果完成签到 ,获得积分10
17秒前
菜鸡学VASP完成签到 ,获得积分10
17秒前
17秒前
zhou完成签到,获得积分10
18秒前
18秒前
18秒前
18秒前
筱雪芲完成签到,获得积分10
19秒前
专一的荧完成签到,获得积分10
21秒前
Hello应助zhangqin采纳,获得10
21秒前
ficus_min发布了新的文献求助10
22秒前
空空发布了新的文献求助10
22秒前
22秒前
Sally完成签到,获得积分10
22秒前
Mr_Hao发布了新的文献求助10
22秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
Impiego dell’associazione acetazolamide/pentossifillina nel trattamento dell’ipoacusia improvvisa idiopatica in pazienti affetti da glaucoma cronico 900
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
錢鍾書楊絳親友書札 600
Geochemistry, 2nd Edition 地球化学经典教科书第二版,不要epub版本 431
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3295946
求助须知:如何正确求助?哪些是违规求助? 2931781
关于积分的说明 8453689
捐赠科研通 2604382
什么是DOI,文献DOI怎么找? 1421675
科研通“疑难数据库(出版商)”最低求助积分说明 661111
邀请新用户注册赠送积分活动 644031