CTCP: Cross Transformer and CNN for Pansharpening

计算机科学 人工智能 模式识别(心理学) 特征提取 卷积神经网络 多光谱图像 全色胶片 图像分辨率 计算机视觉 特征(语言学) 变压器 工程类 电压 语言学 电气工程 哲学
作者
Zhao Su,Yong Yang,Shuying Huang,Weiguo Wan,Wei Tu,Hangyuan Lu,Changjie Chen
标识
DOI:10.1145/3581783.3613815
摘要

Pansharpening is to fuse a high-resolution panchromatic (PAN) image with a low-resolution multispectral (LRMS) image to obtain an enhanced LRMS image with high spectral and spatial resolution. The current Transformer-based pansharpening methods neglect the interaction between the extracted long- and short-range features, resulting in spectral and spatial distortion in the fusion results. To address this issue, a novel cross Transformer and convolutional neural network (CNN) for pansharpening (CTCP) is proposed to achieve better fusion results by designing a cross mechanism, which can enhance the interaction between long- and short-range features. First, a dual branch feature extraction module (DBFEM) is constructed to extract the features from the LRMS and PAN images, respectively, reducing the aliasing of the two image features. In the DBFEM, to improve the feature representation ability of the network, a cross long-short-range feature module (CLSFM) is designed by combining the feature learning capabilities of Transformer and CNN via the cross mechanism, which achieves the integration of long-short-range features. Then, to improve the ability of spectral feature representation, a spectral feature enhancement fusion module (SFEFM) based on a frequency channel attention is constructed to realize feature fusion. Finally, the shallow features from the PAN image are reused to provide detail features, which are integrated with the fused features to obtain the final pansharpened results. To the best of our knowledge, this is the first attempt to introduce the cross mechanism between Transformer and CNN in pansharpening field. Numerous experiments show that our CTCP outperforms some state-of-the-art (SOTA) approaches both subjectively and objectively. The source code will be released at https://github.com/zhsu99/CTCP.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
鳗鱼紫萱完成签到,获得积分10
1秒前
我必定发nature关注了科研通微信公众号
1秒前
GG波波发布了新的文献求助10
2秒前
华仔应助晴云采纳,获得10
4秒前
快乐小狗完成签到 ,获得积分10
4秒前
珞珈完成签到,获得积分10
4秒前
Ya完成签到,获得积分10
4秒前
谦让文昊完成签到,获得积分10
5秒前
小红勇闯科研界完成签到,获得积分10
7秒前
科研通AI2S应助长安采纳,获得10
9秒前
9秒前
10秒前
Amber完成签到,获得积分10
10秒前
10秒前
teborlee完成签到,获得积分10
11秒前
xinxin完成签到,获得积分10
11秒前
SYLH应助鳗鱼鸽子采纳,获得10
11秒前
YY完成签到,获得积分10
12秒前
老德完成签到,获得积分10
12秒前
靓丽的熠彤完成签到,获得积分10
13秒前
深情海秋完成签到,获得积分10
13秒前
14秒前
歇洛克完成签到,获得积分10
15秒前
cao完成签到,获得积分20
15秒前
为你博弈完成签到,获得积分10
16秒前
16秒前
于情信芳完成签到,获得积分10
16秒前
庚小马发布了新的文献求助10
16秒前
淡然妙竹发布了新的文献求助10
17秒前
炒栗子发布了新的文献求助10
17秒前
晴云发布了新的文献求助10
17秒前
18秒前
PHW完成签到,获得积分10
18秒前
monly应助Fin2046采纳,获得30
19秒前
Hello应助JJG采纳,获得10
19秒前
李健的小迷弟应助WJH采纳,获得10
19秒前
21秒前
ty发布了新的文献求助10
21秒前
刘逸藩完成签到,获得积分10
21秒前
yulian完成签到,获得积分10
22秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038569
求助须知:如何正确求助?哪些是违规求助? 3576279
关于积分的说明 11374944
捐赠科研通 3305979
什么是DOI,文献DOI怎么找? 1819354
邀请新用户注册赠送积分活动 892698
科研通“疑难数据库(出版商)”最低求助积分说明 815048