Physical Symptoms, Depressive Symptoms, and Quality of Life in Patients With Heart Failure

医学 生活质量(医疗保健) 星团(航天器) 抑郁症状 胸痛 心力衰竭 物理疗法 萧条(经济学) 横断面研究 可视模拟标度 不利影响 内科学 焦虑 精神科 护理部 病理 计算机科学 经济 宏观经济学 程序设计语言
作者
Seongkum Heo,JungHee Kang,Mi‐Seung Shin,Young‐Hyo Lim,Sun Hwa Kim,Sangsuk Kim,Minjeong An,JinShil Kim
出处
期刊:Journal of Cardiovascular Nursing [Ovid Technologies (Wolters Kluwer)]
被引量:3
标识
DOI:10.1097/jcn.0000000000001043
摘要

Background Physical and psychological symptoms are prevalent in patients with heart failure (HF) and are associated with poor quality of life (QOL) and high hospitalization rates. Thus, it is critical to identify symptom clusters to better manage patients with high-risk symptom cluster(s) and to reduce adverse effects. Objective The aims of this study were to identify clusters of physical HF symptoms (ie, dyspnea during daytime, dyspnea when lying down, fatigue, chest pain, edema, sleeping difficulty, and dizziness) and depressive symptoms and to examine their association with QOL in patients with HF. Methods In this secondary analysis of a cross-sectional study, data on physical HF symptoms (Symptom Status Questionnaire), depressive symptoms (Patient Health Questionnaire-9), and general QOL (European Quality of Scale-Visual Analog Scale) were collected. We identified clusters based on the physical HF symptoms and depressive symptoms using 2-step and k -means cluster analysis methods. Results Chest pain was removed from the model because of the low importance value. Two clusters were revealed (cluster 1, severe symptom cluster, vs cluster 2, less severe symptom cluster) based on the 7 symptoms. In cluster 1, all of the 7 symptoms were more severe, and QOL was poorer than those in cluster 2 (all P s < .001). All the mean and median scores of the 7 symptoms in cluster 1 were higher than those in cluster 2. Conclusions Patients with HF were clearly divided into 2 clusters based on physical HF symptoms and depressive symptoms, which were associated with QOL. Clinicians should assess these symptoms to improve patient outcomes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sigua发布了新的文献求助10
1秒前
共享精神应助9605002942采纳,获得30
1秒前
苏梳1892发布了新的文献求助10
1秒前
优秀不愁发布了新的文献求助10
1秒前
英俊的铭应助funnyzpc采纳,获得10
3秒前
3秒前
博林大师完成签到,获得积分10
3秒前
3秒前
DTL哈哈完成签到 ,获得积分10
4秒前
大琪发布了新的文献求助10
4秒前
1245发布了新的文献求助10
5秒前
斯文败类应助漂亮送终采纳,获得10
6秒前
ywhys发布了新的文献求助10
8秒前
zfcvdavdf完成签到,获得积分10
12秒前
小二郎应助自信南霜采纳,获得10
12秒前
酷炫的问芙完成签到,获得积分20
13秒前
sfdf发布了新的文献求助10
13秒前
汉堡包应助飘逸的三毒采纳,获得10
15秒前
顾矜应助海聪天宇采纳,获得10
17秒前
ywhys完成签到,获得积分10
17秒前
坚强的广山应助花佚狐采纳,获得300
17秒前
sigua完成签到,获得积分10
17秒前
17秒前
Yingkun_Xu完成签到,获得积分10
19秒前
夏鹿发布了新的文献求助10
20秒前
20秒前
田様应助1245采纳,获得10
20秒前
丘比特应助豆子采纳,获得10
20秒前
水的颜色完成签到,获得积分20
21秒前
vivian33完成签到,获得积分10
23秒前
24秒前
LeeChanmn发布了新的文献求助10
25秒前
情怀应助Sid采纳,获得10
25秒前
完美世界应助科研通管家采纳,获得10
27秒前
miaojuly应助科研通管家采纳,获得10
27秒前
酷波er应助科研通管家采纳,获得10
27秒前
funnyzpc发布了新的文献求助10
27秒前
29秒前
夏鹿完成签到,获得积分10
30秒前
djdh发布了新的文献求助10
30秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Les Mantodea de Guyane 1000
Very-high-order BVD Schemes Using β-variable THINC Method 950
Field Guide to Insects of South Africa 660
Product Class 33: N-Arylhydroxylamines 300
Machine Learning in Chemistry 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3387466
求助须知:如何正确求助?哪些是违规求助? 3000207
关于积分的说明 8789936
捐赠科研通 2686116
什么是DOI,文献DOI怎么找? 1471475
科研通“疑难数据库(出版商)”最低求助积分说明 680302
邀请新用户注册赠送积分活动 673072