计算机科学
脑电图
癫痫
深度学习
人工智能
嵌入
人口
相关系数
相关性
机器学习
模式识别(心理学)
统计
数学
医学
心理学
神经科学
环境卫生
几何学
作者
Shu Lih Oh,Jahmunah Vicnesh,Elizabeth E. Palmer,Prabal Datta Barua,Şengül Doğan,Türker Tuncer,Salvador García,Filippo Molinari,U. Rajendra Acharya
标识
DOI:10.1016/j.compbiomed.2023.107312
摘要
The proposed method is both accurate and robust since ten-fold cross-validation was employed to evaluate the performance of the model. Compared to the deep models used in existing studies for epilepsy diagnosis, our proposed method is simple and less computationally intensive. This is the earliest study to have uniquely employed the positional encoding with learnable parameters to each correlation coefficient's embedding together with the deep transformer model, using a huge database of 121 participants for epilepsy detection. With the training and validation of the model using a larger dataset, the same study approach can be extended for the detection of other neurological conditions, with a transformative impact on neurological diagnostics worldwide.
科研通智能强力驱动
Strongly Powered by AbleSci AI