EpilepsyNet: Novel automated detection of epilepsy using transformer model with EEG signals from 121 patient population

计算机科学 脑电图 癫痫 深度学习 人工智能 嵌入 人口 相关系数 相关性 机器学习 模式识别(心理学) 统计 数学 医学 心理学 神经科学 几何学 环境卫生
作者
Shu Lih Oh,V. Jahmunah,Elizabeth E. Palmer,Prabal Datta Barua,Şengül Doğan,Türker Tuncer,Salvador García,Filippo Molinari,U. Rajendra Acharya
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:164: 107312-107312 被引量:21
标识
DOI:10.1016/j.compbiomed.2023.107312
摘要

Epilepsy is one of the most common neurological conditions globally, and the fourth most common in the United States. Recurrent non-provoked seizures characterize it and have huge impacts on the quality of life and financial impacts for affected individuals. A rapid and accurate diagnosis is essential in order to instigate and monitor optimal treatments. There is also a compelling need for the accurate interpretation of epilepsy due to the current scarcity in neurologist diagnosticians and a global inequity in access and outcomes. Furthermore, the existing clinical and traditional machine learning diagnostic methods exhibit limitations, warranting the need to create an automated system using deep learning model for epilepsy detection and monitoring using a huge database. The EEG signals from 35 channels were used to train the deep learning-based transformer model named (EpilepsyNet). For each training iteration, 1-min-long data were randomly sampled from each participant. Thereafter, each 5-s epoch was mapped to a matrix using the Pearson Correlation Coefficient (PCC), such that the bottom part of the triangle was discarded and only the upper triangle of the matrix was vectorized as input data. PCC is a reliable method used to measure the statistical relationship between two variables. Based on the 5 s of data, single embedding was performed thereafter to generate a 1-dimensional array of signals. In the final stage, a positional encoding with learnable parameters was added to each correlation coefficient's embedding before being fed to the developed EpilepsyNet as input data to epilepsy EEG signals. The ten-fold cross-validation technique was used to generate the model. Our transformer-based model (EpilepsyNet) yielded high classification accuracy, sensitivity, specificity and positive predictive values of 85%, 82%, 87%, and 82%, respectively. The proposed method is both accurate and robust since ten-fold cross-validation was employed to evaluate the performance of the model. Compared to the deep models used in existing studies for epilepsy diagnosis, our proposed method is simple and less computationally intensive. This is the earliest study to have uniquely employed the positional encoding with learnable parameters to each correlation coefficient's embedding together with the deep transformer model, using a huge database of 121 participants for epilepsy detection. With the training and validation of the model using a larger dataset, the same study approach can be extended for the detection of other neurological conditions, with a transformative impact on neurological diagnostics worldwide.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
果果完成签到,获得积分10
1秒前
amwlsai完成签到,获得积分10
1秒前
领导范儿应助GEeZiii采纳,获得10
2秒前
不吃了完成签到 ,获得积分0
2秒前
WuchangI发布了新的文献求助10
3秒前
果果发布了新的文献求助10
4秒前
4秒前
满三江完成签到,获得积分10
5秒前
gudujian870928完成签到,获得积分10
6秒前
7秒前
SYLH应助李2003采纳,获得10
8秒前
rookieLi应助boshi采纳,获得10
8秒前
Ula发布了新的文献求助10
8秒前
方方完成签到,获得积分10
8秒前
Ava应助llj采纳,获得10
9秒前
123发布了新的文献求助10
9秒前
平常的狗应助林士采纳,获得10
10秒前
10秒前
芝麻完成签到,获得积分10
10秒前
小兵发布了新的文献求助10
10秒前
11秒前
11秒前
balabala发布了新的文献求助10
11秒前
11秒前
091完成签到 ,获得积分10
11秒前
苹果蜗牛发布了新的文献求助10
12秒前
科研小垃圾完成签到,获得积分10
12秒前
14秒前
14秒前
皮划艇完成签到,获得积分20
14秒前
14秒前
酷波er应助苹果采纳,获得10
14秒前
方方发布了新的文献求助10
15秒前
15秒前
研友_VZG7GZ应助你可真行采纳,获得10
16秒前
花花发布了新的文献求助10
16秒前
SYLH应助XFaning采纳,获得10
16秒前
Lucas应助芝麻采纳,获得10
17秒前
苗条的凝雁完成签到,获得积分10
17秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987223
求助须知:如何正确求助?哪些是违规求助? 3529513
关于积分的说明 11245651
捐赠科研通 3268108
什么是DOI,文献DOI怎么找? 1804027
邀请新用户注册赠送积分活动 881303
科研通“疑难数据库(出版商)”最低求助积分说明 808650