EpilepsyNet: Novel automated detection of epilepsy using transformer model with EEG signals from 121 patient population

计算机科学 脑电图 癫痫 深度学习 人工智能 嵌入 人口 相关系数 相关性 机器学习 模式识别(心理学) 统计 数学 医学 心理学 神经科学 环境卫生 几何学
作者
Shu Lih Oh,V. Jahmunah,Elizabeth E. Palmer,Prabal Datta Barua,Şengül Doğan,Türker Tuncer,Salvador García,Filippo Molinari,U. Rajendra Acharya
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:164: 107312-107312 被引量:21
标识
DOI:10.1016/j.compbiomed.2023.107312
摘要

Epilepsy is one of the most common neurological conditions globally, and the fourth most common in the United States. Recurrent non-provoked seizures characterize it and have huge impacts on the quality of life and financial impacts for affected individuals. A rapid and accurate diagnosis is essential in order to instigate and monitor optimal treatments. There is also a compelling need for the accurate interpretation of epilepsy due to the current scarcity in neurologist diagnosticians and a global inequity in access and outcomes. Furthermore, the existing clinical and traditional machine learning diagnostic methods exhibit limitations, warranting the need to create an automated system using deep learning model for epilepsy detection and monitoring using a huge database. The EEG signals from 35 channels were used to train the deep learning-based transformer model named (EpilepsyNet). For each training iteration, 1-min-long data were randomly sampled from each participant. Thereafter, each 5-s epoch was mapped to a matrix using the Pearson Correlation Coefficient (PCC), such that the bottom part of the triangle was discarded and only the upper triangle of the matrix was vectorized as input data. PCC is a reliable method used to measure the statistical relationship between two variables. Based on the 5 s of data, single embedding was performed thereafter to generate a 1-dimensional array of signals. In the final stage, a positional encoding with learnable parameters was added to each correlation coefficient's embedding before being fed to the developed EpilepsyNet as input data to epilepsy EEG signals. The ten-fold cross-validation technique was used to generate the model. Our transformer-based model (EpilepsyNet) yielded high classification accuracy, sensitivity, specificity and positive predictive values of 85%, 82%, 87%, and 82%, respectively. The proposed method is both accurate and robust since ten-fold cross-validation was employed to evaluate the performance of the model. Compared to the deep models used in existing studies for epilepsy diagnosis, our proposed method is simple and less computationally intensive. This is the earliest study to have uniquely employed the positional encoding with learnable parameters to each correlation coefficient's embedding together with the deep transformer model, using a huge database of 121 participants for epilepsy detection. With the training and validation of the model using a larger dataset, the same study approach can be extended for the detection of other neurological conditions, with a transformative impact on neurological diagnostics worldwide.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
危机的盼晴完成签到,获得积分10
1秒前
烟花应助钟情紫色短裤采纳,获得10
1秒前
1秒前
1秒前
1秒前
希望天下0贩的0应助12345采纳,获得10
3秒前
3秒前
keyanzhang完成签到,获得积分10
4秒前
4秒前
风趣之云完成签到 ,获得积分10
4秒前
wanghh发布了新的文献求助10
4秒前
Duomo应助siri1313采纳,获得20
4秒前
4秒前
5秒前
酒酒完成签到,获得积分10
5秒前
6秒前
jingxuan发布了新的文献求助10
7秒前
7秒前
慕青应助又欠采纳,获得10
7秒前
奕二叁发布了新的文献求助10
7秒前
研友_VZG7GZ应助詹娜娜采纳,获得10
7秒前
7秒前
云柔竹劲完成签到,获得积分10
8秒前
9秒前
9秒前
田様应助keyanzhang采纳,获得10
9秒前
9秒前
酒贰发布了新的文献求助10
10秒前
11秒前
11秒前
壮观之瑶发布了新的文献求助10
11秒前
11秒前
迅速罡完成签到,获得积分20
11秒前
呆萌荧发布了新的文献求助20
12秒前
共享精神应助林海采纳,获得10
13秒前
13秒前
13秒前
浮游应助科研通管家采纳,获得10
13秒前
搜集达人应助科研通管家采纳,获得10
13秒前
科研通AI2S应助科研通管家采纳,获得10
13秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Holistic Discourse Analysis 600
Constitutional and Administrative Law 600
Vertebrate Palaeontology, 5th Edition 530
Fiction e non fiction: storia, teorie e forme 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5344557
求助须知:如何正确求助?哪些是违规求助? 4479749
关于积分的说明 13944365
捐赠科研通 4376951
什么是DOI,文献DOI怎么找? 2404998
邀请新用户注册赠送积分活动 1397528
关于科研通互助平台的介绍 1369880