已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

EpilepsyNet: Novel automated detection of epilepsy using transformer model with EEG signals from 121 patient population

计算机科学 脑电图 癫痫 深度学习 人工智能 嵌入 人口 相关系数 相关性 机器学习 模式识别(心理学) 统计 数学 医学 心理学 神经科学 环境卫生 几何学
作者
Shu Lih Oh,V. Jahmunah,Elizabeth E. Palmer,Prabal Datta Barua,Şengül Doğan,Türker Tuncer,Salvador García,Filippo Molinari,U. Rajendra Acharya
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:164: 107312-107312 被引量:21
标识
DOI:10.1016/j.compbiomed.2023.107312
摘要

Epilepsy is one of the most common neurological conditions globally, and the fourth most common in the United States. Recurrent non-provoked seizures characterize it and have huge impacts on the quality of life and financial impacts for affected individuals. A rapid and accurate diagnosis is essential in order to instigate and monitor optimal treatments. There is also a compelling need for the accurate interpretation of epilepsy due to the current scarcity in neurologist diagnosticians and a global inequity in access and outcomes. Furthermore, the existing clinical and traditional machine learning diagnostic methods exhibit limitations, warranting the need to create an automated system using deep learning model for epilepsy detection and monitoring using a huge database. The EEG signals from 35 channels were used to train the deep learning-based transformer model named (EpilepsyNet). For each training iteration, 1-min-long data were randomly sampled from each participant. Thereafter, each 5-s epoch was mapped to a matrix using the Pearson Correlation Coefficient (PCC), such that the bottom part of the triangle was discarded and only the upper triangle of the matrix was vectorized as input data. PCC is a reliable method used to measure the statistical relationship between two variables. Based on the 5 s of data, single embedding was performed thereafter to generate a 1-dimensional array of signals. In the final stage, a positional encoding with learnable parameters was added to each correlation coefficient's embedding before being fed to the developed EpilepsyNet as input data to epilepsy EEG signals. The ten-fold cross-validation technique was used to generate the model. Our transformer-based model (EpilepsyNet) yielded high classification accuracy, sensitivity, specificity and positive predictive values of 85%, 82%, 87%, and 82%, respectively. The proposed method is both accurate and robust since ten-fold cross-validation was employed to evaluate the performance of the model. Compared to the deep models used in existing studies for epilepsy diagnosis, our proposed method is simple and less computationally intensive. This is the earliest study to have uniquely employed the positional encoding with learnable parameters to each correlation coefficient's embedding together with the deep transformer model, using a huge database of 121 participants for epilepsy detection. With the training and validation of the model using a larger dataset, the same study approach can be extended for the detection of other neurological conditions, with a transformative impact on neurological diagnostics worldwide.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
所所应助高铭泽采纳,获得10
刚刚
丘比特应助高铭泽采纳,获得10
刚刚
大模型应助高铭泽采纳,获得10
刚刚
汉堡包应助高铭泽采纳,获得10
刚刚
小马甲应助高铭泽采纳,获得10
刚刚
欧皇完成签到,获得积分20
2秒前
欧皇发布了新的文献求助50
3秒前
Lucas应助哆啦小奶龙采纳,获得10
4秒前
boldhammer完成签到 ,获得积分10
4秒前
漓一完成签到 ,获得积分10
6秒前
7秒前
8秒前
jingutaimi完成签到,获得积分10
9秒前
Caer完成签到,获得积分10
11秒前
11秒前
11秒前
机智灯泡完成签到 ,获得积分10
13秒前
14秒前
山复尔尔完成签到 ,获得积分10
14秒前
菲菲完成签到 ,获得积分10
15秒前
精明冰夏完成签到,获得积分10
15秒前
风不定发布了新的文献求助30
16秒前
李程阳完成签到 ,获得积分10
17秒前
小机灵发布了新的文献求助10
18秒前
twinkle完成签到 ,获得积分10
20秒前
小吴完成签到,获得积分10
21秒前
选兵完成签到,获得积分10
22秒前
伶俐的金连完成签到 ,获得积分10
22秒前
pass完成签到 ,获得积分10
22秒前
曲淳完成签到,获得积分10
23秒前
23秒前
哆啦小奶龙完成签到,获得积分10
24秒前
24秒前
爱听歌电灯胆完成签到,获得积分10
24秒前
忧伤的映阳完成签到 ,获得积分10
24秒前
Lucas应助吃死你啦啦采纳,获得10
27秒前
点点点完成签到 ,获得积分10
31秒前
清秀小霸王完成签到,获得积分10
31秒前
32秒前
丁昂霄完成签到 ,获得积分10
33秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5407525
求助须知:如何正确求助?哪些是违规求助? 4525082
关于积分的说明 14100857
捐赠科研通 4438819
什么是DOI,文献DOI怎么找? 2436491
邀请新用户注册赠送积分活动 1428483
关于科研通互助平台的介绍 1406504