重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

EpilepsyNet: Novel automated detection of epilepsy using transformer model with EEG signals from 121 patient population

计算机科学 脑电图 癫痫 深度学习 人工智能 嵌入 人口 相关系数 相关性 机器学习 模式识别(心理学) 统计 数学 医学 心理学 神经科学 环境卫生 几何学
作者
Shu Lih Oh,V. Jahmunah,Elizabeth E. Palmer,Prabal Datta Barua,Şengül Doğan,Türker Tuncer,Salvador García,Filippo Molinari,U. Rajendra Acharya
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:164: 107312-107312 被引量:21
标识
DOI:10.1016/j.compbiomed.2023.107312
摘要

Epilepsy is one of the most common neurological conditions globally, and the fourth most common in the United States. Recurrent non-provoked seizures characterize it and have huge impacts on the quality of life and financial impacts for affected individuals. A rapid and accurate diagnosis is essential in order to instigate and monitor optimal treatments. There is also a compelling need for the accurate interpretation of epilepsy due to the current scarcity in neurologist diagnosticians and a global inequity in access and outcomes. Furthermore, the existing clinical and traditional machine learning diagnostic methods exhibit limitations, warranting the need to create an automated system using deep learning model for epilepsy detection and monitoring using a huge database. The EEG signals from 35 channels were used to train the deep learning-based transformer model named (EpilepsyNet). For each training iteration, 1-min-long data were randomly sampled from each participant. Thereafter, each 5-s epoch was mapped to a matrix using the Pearson Correlation Coefficient (PCC), such that the bottom part of the triangle was discarded and only the upper triangle of the matrix was vectorized as input data. PCC is a reliable method used to measure the statistical relationship between two variables. Based on the 5 s of data, single embedding was performed thereafter to generate a 1-dimensional array of signals. In the final stage, a positional encoding with learnable parameters was added to each correlation coefficient's embedding before being fed to the developed EpilepsyNet as input data to epilepsy EEG signals. The ten-fold cross-validation technique was used to generate the model. Our transformer-based model (EpilepsyNet) yielded high classification accuracy, sensitivity, specificity and positive predictive values of 85%, 82%, 87%, and 82%, respectively. The proposed method is both accurate and robust since ten-fold cross-validation was employed to evaluate the performance of the model. Compared to the deep models used in existing studies for epilepsy diagnosis, our proposed method is simple and less computationally intensive. This is the earliest study to have uniquely employed the positional encoding with learnable parameters to each correlation coefficient's embedding together with the deep transformer model, using a huge database of 121 participants for epilepsy detection. With the training and validation of the model using a larger dataset, the same study approach can be extended for the detection of other neurological conditions, with a transformative impact on neurological diagnostics worldwide.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可乐完成签到,获得积分20
1秒前
1秒前
顾瑶完成签到,获得积分10
2秒前
搞怪的半芹关注了科研通微信公众号
2秒前
一颗梨完成签到,获得积分10
2秒前
3秒前
4秒前
4秒前
笑点低的紫完成签到,获得积分10
4秒前
冷傲的柜子完成签到,获得积分10
4秒前
4秒前
5秒前
6秒前
6秒前
LXL发布了新的文献求助10
6秒前
乐乐应助啦啦啦采纳,获得10
6秒前
科研通AI6应助一颗梨采纳,获得10
7秒前
小海绵完成签到,获得积分10
7秒前
orixero应助友好的千凡采纳,获得10
7秒前
欧阳铭发布了新的文献求助10
8秒前
会懂的发布了新的文献求助10
8秒前
PANGDA发布了新的文献求助10
9秒前
兴奋天荷发布了新的文献求助10
10秒前
小白发布了新的文献求助10
10秒前
Ava应助复方蛋酥卷采纳,获得10
11秒前
量子星尘发布了新的文献求助10
11秒前
我是老大应助多多采纳,获得10
12秒前
12秒前
12秒前
wanci应助戴维少尉采纳,获得10
12秒前
zs完成签到 ,获得积分10
14秒前
14秒前
华仔应助蒋蒋采纳,获得10
15秒前
lcs完成签到,获得积分10
17秒前
可乐发布了新的文献求助10
17秒前
阿赵完成签到,获得积分10
17秒前
高速公鹿完成签到 ,获得积分10
18秒前
18秒前
清欢完成签到,获得积分10
18秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5468225
求助须知:如何正确求助?哪些是违规求助? 4571705
关于积分的说明 14331270
捐赠科研通 4498225
什么是DOI,文献DOI怎么找? 2464411
邀请新用户注册赠送积分活动 1453131
关于科研通互助平台的介绍 1427777