亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

EpilepsyNet: Novel automated detection of epilepsy using transformer model with EEG signals from 121 patient population

计算机科学 脑电图 癫痫 深度学习 人工智能 嵌入 人口 相关系数 相关性 机器学习 模式识别(心理学) 统计 数学 医学 心理学 神经科学 环境卫生 几何学
作者
Shu Lih Oh,V. Jahmunah,Elizabeth E. Palmer,Prabal Datta Barua,Şengül Doğan,Türker Tuncer,Salvador García,Filippo Molinari,U. Rajendra Acharya
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:164: 107312-107312 被引量:21
标识
DOI:10.1016/j.compbiomed.2023.107312
摘要

Epilepsy is one of the most common neurological conditions globally, and the fourth most common in the United States. Recurrent non-provoked seizures characterize it and have huge impacts on the quality of life and financial impacts for affected individuals. A rapid and accurate diagnosis is essential in order to instigate and monitor optimal treatments. There is also a compelling need for the accurate interpretation of epilepsy due to the current scarcity in neurologist diagnosticians and a global inequity in access and outcomes. Furthermore, the existing clinical and traditional machine learning diagnostic methods exhibit limitations, warranting the need to create an automated system using deep learning model for epilepsy detection and monitoring using a huge database. The EEG signals from 35 channels were used to train the deep learning-based transformer model named (EpilepsyNet). For each training iteration, 1-min-long data were randomly sampled from each participant. Thereafter, each 5-s epoch was mapped to a matrix using the Pearson Correlation Coefficient (PCC), such that the bottom part of the triangle was discarded and only the upper triangle of the matrix was vectorized as input data. PCC is a reliable method used to measure the statistical relationship between two variables. Based on the 5 s of data, single embedding was performed thereafter to generate a 1-dimensional array of signals. In the final stage, a positional encoding with learnable parameters was added to each correlation coefficient's embedding before being fed to the developed EpilepsyNet as input data to epilepsy EEG signals. The ten-fold cross-validation technique was used to generate the model. Our transformer-based model (EpilepsyNet) yielded high classification accuracy, sensitivity, specificity and positive predictive values of 85%, 82%, 87%, and 82%, respectively. The proposed method is both accurate and robust since ten-fold cross-validation was employed to evaluate the performance of the model. Compared to the deep models used in existing studies for epilepsy diagnosis, our proposed method is simple and less computationally intensive. This is the earliest study to have uniquely employed the positional encoding with learnable parameters to each correlation coefficient's embedding together with the deep transformer model, using a huge database of 121 participants for epilepsy detection. With the training and validation of the model using a larger dataset, the same study approach can be extended for the detection of other neurological conditions, with a transformative impact on neurological diagnostics worldwide.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
休斯顿完成签到,获得积分10
3秒前
5秒前
7秒前
9秒前
没有昵称发布了新的文献求助10
12秒前
wanci应助小明明采纳,获得10
12秒前
ZJakariae发布了新的文献求助10
13秒前
ljlwh完成签到 ,获得积分10
29秒前
Jasper应助没有昵称采纳,获得10
30秒前
34秒前
传奇3应助七彩墨色鱼采纳,获得10
38秒前
elliotzzz发布了新的文献求助30
38秒前
浮游应助大气凝云采纳,获得10
47秒前
ZJakariae完成签到,获得积分10
49秒前
Anthonywll完成签到 ,获得积分10
1分钟前
1分钟前
可爱的函函应助lac813采纳,获得10
1分钟前
1分钟前
火星上的山河完成签到,获得积分10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
烟花应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
彭于晏应助天真千易采纳,获得10
1分钟前
闪闪小小完成签到 ,获得积分10
1分钟前
1分钟前
上官若男应助李亚宁采纳,获得10
1分钟前
1分钟前
1分钟前
嘻嘻哈哈应助大气凝云采纳,获得10
1分钟前
天真千易发布了新的文献求助10
1分钟前
luxiang发布了新的文献求助10
1分钟前
1分钟前
呼安完成签到,获得积分10
1分钟前
2分钟前
cheese发布了新的文献求助10
2分钟前
橘橘橘子皮完成签到 ,获得积分10
2分钟前
LJL完成签到 ,获得积分10
2分钟前
华仔应助HXZ采纳,获得30
2分钟前
SciGPT应助Aulorra采纳,获得10
2分钟前
深情安青应助科研小白采纳,获得10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 901
Item Response Theory 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5426294
求助须知:如何正确求助?哪些是违规求助? 4540112
关于积分的说明 14171650
捐赠科研通 4457871
什么是DOI,文献DOI怎么找? 2444698
邀请新用户注册赠送积分活动 1435666
关于科研通互助平台的介绍 1413164