EpilepsyNet: Novel automated detection of epilepsy using transformer model with EEG signals from 121 patient population

计算机科学 脑电图 癫痫 深度学习 人工智能 嵌入 人口 相关系数 相关性 机器学习 模式识别(心理学) 统计 数学 医学 心理学 神经科学 环境卫生 几何学
作者
Shu Lih Oh,V. Jahmunah,Elizabeth E. Palmer,Prabal Datta Barua,Şengül Doğan,Türker Tuncer,Salvador García,Filippo Molinari,U. Rajendra Acharya
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:164: 107312-107312 被引量:21
标识
DOI:10.1016/j.compbiomed.2023.107312
摘要

Epilepsy is one of the most common neurological conditions globally, and the fourth most common in the United States. Recurrent non-provoked seizures characterize it and have huge impacts on the quality of life and financial impacts for affected individuals. A rapid and accurate diagnosis is essential in order to instigate and monitor optimal treatments. There is also a compelling need for the accurate interpretation of epilepsy due to the current scarcity in neurologist diagnosticians and a global inequity in access and outcomes. Furthermore, the existing clinical and traditional machine learning diagnostic methods exhibit limitations, warranting the need to create an automated system using deep learning model for epilepsy detection and monitoring using a huge database. The EEG signals from 35 channels were used to train the deep learning-based transformer model named (EpilepsyNet). For each training iteration, 1-min-long data were randomly sampled from each participant. Thereafter, each 5-s epoch was mapped to a matrix using the Pearson Correlation Coefficient (PCC), such that the bottom part of the triangle was discarded and only the upper triangle of the matrix was vectorized as input data. PCC is a reliable method used to measure the statistical relationship between two variables. Based on the 5 s of data, single embedding was performed thereafter to generate a 1-dimensional array of signals. In the final stage, a positional encoding with learnable parameters was added to each correlation coefficient's embedding before being fed to the developed EpilepsyNet as input data to epilepsy EEG signals. The ten-fold cross-validation technique was used to generate the model. Our transformer-based model (EpilepsyNet) yielded high classification accuracy, sensitivity, specificity and positive predictive values of 85%, 82%, 87%, and 82%, respectively. The proposed method is both accurate and robust since ten-fold cross-validation was employed to evaluate the performance of the model. Compared to the deep models used in existing studies for epilepsy diagnosis, our proposed method is simple and less computationally intensive. This is the earliest study to have uniquely employed the positional encoding with learnable parameters to each correlation coefficient's embedding together with the deep transformer model, using a huge database of 121 participants for epilepsy detection. With the training and validation of the model using a larger dataset, the same study approach can be extended for the detection of other neurological conditions, with a transformative impact on neurological diagnostics worldwide.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
隐形曼青应助欣喜访旋采纳,获得10
1秒前
852应助Millie采纳,获得10
1秒前
龍Ryu完成签到,获得积分10
2秒前
内向凌兰发布了新的文献求助10
3秒前
伍秋望完成签到,获得积分10
3秒前
4秒前
5秒前
跳跃发布了新的文献求助10
6秒前
持卿应助宗磬采纳,获得20
6秒前
6秒前
花生油炒花生米完成签到 ,获得积分10
6秒前
Riki完成签到,获得积分10
8秒前
虚幻白玉发布了新的文献求助10
8秒前
德行天下完成签到,获得积分10
8秒前
Jenny应助lan采纳,获得10
9秒前
fztnh完成签到,获得积分10
9秒前
上官若男应助lyz666采纳,获得10
9秒前
顾念完成签到 ,获得积分10
9秒前
277发布了新的文献求助10
10秒前
小二郎应助GCD采纳,获得10
11秒前
hhhhhh完成签到 ,获得积分10
11秒前
甜味拾荒者完成签到,获得积分10
13秒前
小二郎应助BONBON采纳,获得10
13秒前
14秒前
charllie完成签到 ,获得积分10
14秒前
空禅yew完成签到,获得积分10
15秒前
坚强亦丝应助跳跃采纳,获得10
17秒前
英俊的铭应助cc采纳,获得10
17秒前
huangsan完成签到,获得积分10
17秒前
匹诺曹完成签到,获得积分10
17秒前
18秒前
华仔应助进取拼搏采纳,获得10
18秒前
19秒前
dingdong发布了新的文献求助10
19秒前
you完成签到 ,获得积分10
20秒前
qwf完成签到 ,获得积分10
20秒前
21秒前
万能图书馆应助一一采纳,获得10
21秒前
执着跳跳糖完成签到 ,获得积分10
22秒前
阳yang完成签到,获得积分10
22秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808