Band-wise Hyperspectral Image Pansharpening using CNN Model Propagation

高光谱成像 全色胶片 计算机科学 人工智能 深度学习 基本事实 像素 一般化 模式识别(心理学) 维数(图论) 图像分辨率 图像(数学) 计算机视觉 机器学习 数学 数学分析 纯数学
作者
Giuseppe Guarino,Matteo Ciotola,Gemine Vivone,Giuseppe Scarpa
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2311.06510
摘要

Hyperspectral pansharpening is receiving a growing interest since the last few years as testified by a large number of research papers and challenges. It consists in a pixel-level fusion between a lower-resolution hyperspectral datacube and a higher-resolution single-band image, the panchromatic image, with the goal of providing a hyperspectral datacube at panchromatic resolution. Thanks to their powerful representational capabilities, deep learning models have succeeded to provide unprecedented results on many general purpose image processing tasks. However, when moving to domain specific problems, as in this case, the advantages with respect to traditional model-based approaches are much lesser clear-cut due to several contextual reasons. Scarcity of training data, lack of ground-truth, data shape variability, are some such factors that limit the generalization capacity of the state-of-the-art deep learning networks for hyperspectral pansharpening. To cope with these limitations, in this work we propose a new deep learning method which inherits a simple single-band unsupervised pansharpening model nested in a sequential band-wise adaptive scheme, where each band is pansharpened refining the model tuned on the preceding one. By doing so, a simple model is propagated along the wavelength dimension, adaptively and flexibly, with no need to have a fixed number of spectral bands, and, with no need to dispose of large, expensive and labeled training datasets. The proposed method achieves very good results on our datasets, outperforming both traditional and deep learning reference methods. The implementation of the proposed method can be found on https://github.com/giu-guarino/R-PNN
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
terminus发布了新的文献求助10
刚刚
刚刚
123123发布了新的文献求助10
刚刚
大可完成签到 ,获得积分10
1秒前
香蕉觅云应助Tong123采纳,获得10
2秒前
2秒前
小王啵啵发布了新的文献求助10
2秒前
李健的小迷弟应助MHX采纳,获得10
2秒前
2秒前
焦糖色发布了新的文献求助10
2秒前
可爱的菠萝完成签到,获得积分10
3秒前
aaaaa发布了新的文献求助10
3秒前
快乐婴完成签到,获得积分10
3秒前
眼睛大雨筠应助Cyber_relic采纳,获得50
4秒前
搜集达人应助宝儿柯察金采纳,获得10
4秒前
tianzhanggong完成签到,获得积分10
4秒前
xlbn完成签到,获得积分10
5秒前
5秒前
6秒前
壮观的翠芙完成签到,获得积分10
6秒前
6秒前
汉堡包应助佳哥闯天下采纳,获得10
6秒前
笑点低代萱完成签到,获得积分10
7秒前
JamesPei应助Lin采纳,获得10
7秒前
8秒前
8秒前
JW2071367发布了新的文献求助10
8秒前
9秒前
焦糖色完成签到,获得积分10
9秒前
10秒前
火星上涫发布了新的文献求助10
10秒前
wonderful完成签到,获得积分10
10秒前
Jasper应助123123采纳,获得10
11秒前
11秒前
搜集达人应助心静如水采纳,获得10
11秒前
蜡笔小新发布了新的文献求助60
11秒前
zxy完成签到,获得积分10
11秒前
13秒前
13秒前
游标卡尺完成签到,获得积分10
13秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3970632
求助须知:如何正确求助?哪些是违规求助? 3515261
关于积分的说明 11177794
捐赠科研通 3250448
什么是DOI,文献DOI怎么找? 1795314
邀请新用户注册赠送积分活动 875781
科研通“疑难数据库(出版商)”最低求助积分说明 805073