Band-wise Hyperspectral Image Pansharpening using CNN Model Propagation

高光谱成像 全色胶片 计算机科学 人工智能 深度学习 基本事实 像素 一般化 模式识别(心理学) 维数(图论) 图像分辨率 图像(数学) 计算机视觉 机器学习 数学 数学分析 纯数学
作者
Giuseppe Guarino,Matteo Ciotola,Gemine Vivone,Giuseppe Scarpa
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2311.06510
摘要

Hyperspectral pansharpening is receiving a growing interest since the last few years as testified by a large number of research papers and challenges. It consists in a pixel-level fusion between a lower-resolution hyperspectral datacube and a higher-resolution single-band image, the panchromatic image, with the goal of providing a hyperspectral datacube at panchromatic resolution. Thanks to their powerful representational capabilities, deep learning models have succeeded to provide unprecedented results on many general purpose image processing tasks. However, when moving to domain specific problems, as in this case, the advantages with respect to traditional model-based approaches are much lesser clear-cut due to several contextual reasons. Scarcity of training data, lack of ground-truth, data shape variability, are some such factors that limit the generalization capacity of the state-of-the-art deep learning networks for hyperspectral pansharpening. To cope with these limitations, in this work we propose a new deep learning method which inherits a simple single-band unsupervised pansharpening model nested in a sequential band-wise adaptive scheme, where each band is pansharpened refining the model tuned on the preceding one. By doing so, a simple model is propagated along the wavelength dimension, adaptively and flexibly, with no need to have a fixed number of spectral bands, and, with no need to dispose of large, expensive and labeled training datasets. The proposed method achieves very good results on our datasets, outperforming both traditional and deep learning reference methods. The implementation of the proposed method can be found on https://github.com/giu-guarino/R-PNN

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
在水一方应助emoji采纳,获得10
1秒前
量子星尘发布了新的文献求助30
1秒前
科研通AI6.1应助zjm采纳,获得10
1秒前
fangxin完成签到,获得积分10
2秒前
黄则已发布了新的文献求助10
2秒前
英俊的铭应助外向的梦安采纳,获得10
3秒前
顺利的飞荷完成签到,获得积分0
4秒前
科研通AI6应助11231采纳,获得10
4秒前
4秒前
5秒前
左手树完成签到,获得积分10
6秒前
悦耳白山应助帝国之花采纳,获得10
6秒前
斯文败类应助帝国之花采纳,获得50
6秒前
7秒前
zw1215425发布了新的文献求助10
7秒前
双子土豆泥完成签到 ,获得积分10
8秒前
走走发布了新的文献求助10
10秒前
10秒前
10秒前
愉快的鸭完成签到 ,获得积分10
10秒前
11秒前
领导范儿应助如意2023采纳,获得10
14秒前
14秒前
亲爱的桃乐茜完成签到 ,获得积分10
15秒前
jssssssss发布了新的文献求助10
15秒前
lbyscu完成签到 ,获得积分0
16秒前
青山关注了科研通微信公众号
16秒前
Hello应助走走采纳,获得10
17秒前
17秒前
大星星完成签到,获得积分10
17秒前
17秒前
17秒前
汉堡包应助cao采纳,获得10
17秒前
17秒前
开朗冰绿完成签到,获得积分20
18秒前
18秒前
18秒前
PAIDAXXXX发布了新的文献求助10
19秒前
19秒前
awen发布了新的文献求助10
20秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5745368
求助须知:如何正确求助?哪些是违规求助? 5425346
关于积分的说明 15352788
捐赠科研通 4885424
什么是DOI,文献DOI怎么找? 2626604
邀请新用户注册赠送积分活动 1575254
关于科研通互助平台的介绍 1531987