Band-wise Hyperspectral Image Pansharpening using CNN Model Propagation

高光谱成像 全色胶片 计算机科学 人工智能 深度学习 基本事实 像素 一般化 模式识别(心理学) 维数(图论) 图像分辨率 图像(数学) 计算机视觉 机器学习 数学 数学分析 纯数学
作者
Giuseppe Guarino,Matteo Ciotola,Gemine Vivone,Giuseppe Scarpa
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2311.06510
摘要

Hyperspectral pansharpening is receiving a growing interest since the last few years as testified by a large number of research papers and challenges. It consists in a pixel-level fusion between a lower-resolution hyperspectral datacube and a higher-resolution single-band image, the panchromatic image, with the goal of providing a hyperspectral datacube at panchromatic resolution. Thanks to their powerful representational capabilities, deep learning models have succeeded to provide unprecedented results on many general purpose image processing tasks. However, when moving to domain specific problems, as in this case, the advantages with respect to traditional model-based approaches are much lesser clear-cut due to several contextual reasons. Scarcity of training data, lack of ground-truth, data shape variability, are some such factors that limit the generalization capacity of the state-of-the-art deep learning networks for hyperspectral pansharpening. To cope with these limitations, in this work we propose a new deep learning method which inherits a simple single-band unsupervised pansharpening model nested in a sequential band-wise adaptive scheme, where each band is pansharpened refining the model tuned on the preceding one. By doing so, a simple model is propagated along the wavelength dimension, adaptively and flexibly, with no need to have a fixed number of spectral bands, and, with no need to dispose of large, expensive and labeled training datasets. The proposed method achieves very good results on our datasets, outperforming both traditional and deep learning reference methods. The implementation of the proposed method can be found on https://github.com/giu-guarino/R-PNN
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lyg完成签到,获得积分20
刚刚
坚强的樱发布了新的文献求助10
刚刚
baodingning完成签到,获得积分10
1秒前
1秒前
公茂源发布了新的文献求助30
1秒前
热爱完成签到,获得积分10
2秒前
3秒前
叫滚滚发布了新的文献求助10
4秒前
星瑆心完成签到,获得积分10
4秒前
啦啦啦啦啦完成签到,获得积分10
5秒前
Lyg发布了新的文献求助10
5秒前
Dksido完成签到,获得积分10
6秒前
兰博基尼奥完成签到,获得积分10
6秒前
热情芷荷发布了新的文献求助10
8秒前
random完成签到,获得积分10
9秒前
9秒前
果果瑞宁完成签到,获得积分10
9秒前
10秒前
机智小虾米完成签到,获得积分20
10秒前
goldenfleece完成签到,获得积分10
11秒前
科研通AI2S应助学者采纳,获得10
11秒前
小杨完成签到,获得积分10
12秒前
sutharsons应助科研通管家采纳,获得30
13秒前
13秒前
Ava应助科研通管家采纳,获得10
13秒前
慕青应助科研通管家采纳,获得10
13秒前
所所应助科研通管家采纳,获得10
13秒前
在水一方应助科研通管家采纳,获得10
13秒前
小蘑菇应助科研通管家采纳,获得10
13秒前
科研通AI5应助科研通管家采纳,获得30
13秒前
传奇3应助科研通管家采纳,获得10
13秒前
科目三应助科研通管家采纳,获得10
13秒前
NexusExplorer应助科研通管家采纳,获得10
13秒前
CipherSage应助科研通管家采纳,获得30
13秒前
SciGPT应助科研通管家采纳,获得10
13秒前
Eric_Lee2000应助科研通管家采纳,获得10
13秒前
斯文败类应助科研通管家采纳,获得10
13秒前
13秒前
王子完成签到,获得积分10
14秒前
李繁蕊发布了新的文献求助10
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808