亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Band-wise Hyperspectral Image Pansharpening using CNN Model Propagation

高光谱成像 全色胶片 计算机科学 人工智能 深度学习 基本事实 像素 一般化 模式识别(心理学) 维数(图论) 图像分辨率 图像(数学) 计算机视觉 机器学习 数学 数学分析 纯数学
作者
Giuseppe Guarino,Matteo Ciotola,Gemine Vivone,Giuseppe Scarpa
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2311.06510
摘要

Hyperspectral pansharpening is receiving a growing interest since the last few years as testified by a large number of research papers and challenges. It consists in a pixel-level fusion between a lower-resolution hyperspectral datacube and a higher-resolution single-band image, the panchromatic image, with the goal of providing a hyperspectral datacube at panchromatic resolution. Thanks to their powerful representational capabilities, deep learning models have succeeded to provide unprecedented results on many general purpose image processing tasks. However, when moving to domain specific problems, as in this case, the advantages with respect to traditional model-based approaches are much lesser clear-cut due to several contextual reasons. Scarcity of training data, lack of ground-truth, data shape variability, are some such factors that limit the generalization capacity of the state-of-the-art deep learning networks for hyperspectral pansharpening. To cope with these limitations, in this work we propose a new deep learning method which inherits a simple single-band unsupervised pansharpening model nested in a sequential band-wise adaptive scheme, where each band is pansharpened refining the model tuned on the preceding one. By doing so, a simple model is propagated along the wavelength dimension, adaptively and flexibly, with no need to have a fixed number of spectral bands, and, with no need to dispose of large, expensive and labeled training datasets. The proposed method achieves very good results on our datasets, outperforming both traditional and deep learning reference methods. The implementation of the proposed method can be found on https://github.com/giu-guarino/R-PNN

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
2秒前
我是老大应助啵子采纳,获得10
6秒前
桐桐应助zjr采纳,获得10
10秒前
15秒前
天宇南神完成签到 ,获得积分10
18秒前
南方-发布了新的文献求助10
20秒前
瓶子发布了新的文献求助10
23秒前
23秒前
桃子e发布了新的文献求助10
29秒前
zjr完成签到,获得积分20
35秒前
36秒前
zjr发布了新的文献求助10
39秒前
41秒前
瓶子发布了新的文献求助10
47秒前
49秒前
sugkook发布了新的文献求助10
54秒前
1分钟前
瓶子发布了新的文献求助10
1分钟前
taku完成签到 ,获得积分10
1分钟前
南方-完成签到,获得积分10
1分钟前
汉堡包应助zjr采纳,获得10
1分钟前
1分钟前
啵子发布了新的文献求助10
1分钟前
1分钟前
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
天地一沙鸥完成签到,获得积分10
1分钟前
桃子e发布了新的文献求助10
1分钟前
瓶子发布了新的文献求助10
1分钟前
张涛完成签到 ,获得积分10
1分钟前
Lucas应助啵子采纳,获得10
1分钟前
小滕同学发布了新的文献求助20
2分钟前
烟花应助飞常爱你哦采纳,获得10
2分钟前
2分钟前
2分钟前
2分钟前
Aimee完成签到,获得积分10
2分钟前
2分钟前
2分钟前
zjr发布了新的文献求助10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Electron Energy Loss Spectroscopy 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5780276
求助须知:如何正确求助?哪些是违规求助? 5654271
关于积分的说明 15453001
捐赠科研通 4911021
什么是DOI,文献DOI怎么找? 2643202
邀请新用户注册赠送积分活动 1590841
关于科研通互助平台的介绍 1545346