Band-wise Hyperspectral Image Pansharpening using CNN Model Propagation

高光谱成像 全色胶片 计算机科学 人工智能 深度学习 基本事实 像素 一般化 模式识别(心理学) 维数(图论) 图像分辨率 图像(数学) 计算机视觉 机器学习 数学 数学分析 纯数学
作者
Giuseppe Guarino,Matteo Ciotola,Gemine Vivone,Giuseppe Scarpa
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2311.06510
摘要

Hyperspectral pansharpening is receiving a growing interest since the last few years as testified by a large number of research papers and challenges. It consists in a pixel-level fusion between a lower-resolution hyperspectral datacube and a higher-resolution single-band image, the panchromatic image, with the goal of providing a hyperspectral datacube at panchromatic resolution. Thanks to their powerful representational capabilities, deep learning models have succeeded to provide unprecedented results on many general purpose image processing tasks. However, when moving to domain specific problems, as in this case, the advantages with respect to traditional model-based approaches are much lesser clear-cut due to several contextual reasons. Scarcity of training data, lack of ground-truth, data shape variability, are some such factors that limit the generalization capacity of the state-of-the-art deep learning networks for hyperspectral pansharpening. To cope with these limitations, in this work we propose a new deep learning method which inherits a simple single-band unsupervised pansharpening model nested in a sequential band-wise adaptive scheme, where each band is pansharpened refining the model tuned on the preceding one. By doing so, a simple model is propagated along the wavelength dimension, adaptively and flexibly, with no need to have a fixed number of spectral bands, and, with no need to dispose of large, expensive and labeled training datasets. The proposed method achieves very good results on our datasets, outperforming both traditional and deep learning reference methods. The implementation of the proposed method can be found on https://github.com/giu-guarino/R-PNN

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
senlin完成签到,获得积分20
1秒前
Liu发布了新的文献求助10
1秒前
1秒前
吴小利完成签到,获得积分10
1秒前
QQ完成签到,获得积分10
2秒前
浮游应助尹辉采纳,获得10
2秒前
236完成签到,获得积分10
3秒前
杨永乾完成签到,获得积分20
3秒前
星河圈揽完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
4秒前
leek完成签到 ,获得积分10
5秒前
5秒前
华仔应助药学小团子采纳,获得10
6秒前
爆米花应助ysxl采纳,获得10
6秒前
客厅狂欢发布了新的文献求助10
6秒前
8秒前
majiko完成签到,获得积分10
8秒前
杨永乾发布了新的文献求助10
8秒前
10秒前
CHL完成签到 ,获得积分10
10秒前
12秒前
茨茨喵喵完成签到,获得积分10
12秒前
小灰灰完成签到,获得积分10
12秒前
搜集达人应助poki采纳,获得10
13秒前
酷波er应助向晚采纳,获得10
13秒前
量子星尘发布了新的文献求助10
14秒前
灯座发布了新的文献求助10
16秒前
深竹月完成签到,获得积分10
17秒前
ccc发布了新的文献求助10
17秒前
独白完成签到 ,获得积分10
17秒前
时来运转完成签到 ,获得积分10
17秒前
欢城发布了新的文献求助10
19秒前
GEeZiii完成签到,获得积分10
19秒前
小坤不慌完成签到 ,获得积分10
19秒前
凶狗碎大石完成签到,获得积分10
21秒前
21秒前
谢大喵发布了新的文献求助10
21秒前
风清扬发布了新的文献求助10
22秒前
Linda完成签到 ,获得积分10
23秒前
fanghaoxiang发布了新的文献求助30
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Chemistry and Biochemistry: Research Progress Vol. 7 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5684190
求助须知:如何正确求助?哪些是违规求助? 5035564
关于积分的说明 15183757
捐赠科研通 4843529
什么是DOI,文献DOI怎么找? 2596718
邀请新用户注册赠送积分活动 1549418
关于科研通互助平台的介绍 1507952