已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Band-wise Hyperspectral Image Pansharpening using CNN Model Propagation

高光谱成像 全色胶片 计算机科学 人工智能 深度学习 基本事实 像素 一般化 模式识别(心理学) 维数(图论) 图像分辨率 图像(数学) 计算机视觉 机器学习 数学 数学分析 纯数学
作者
Giuseppe Guarino,Matteo Ciotola,Gemine Vivone,Giuseppe Scarpa
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2311.06510
摘要

Hyperspectral pansharpening is receiving a growing interest since the last few years as testified by a large number of research papers and challenges. It consists in a pixel-level fusion between a lower-resolution hyperspectral datacube and a higher-resolution single-band image, the panchromatic image, with the goal of providing a hyperspectral datacube at panchromatic resolution. Thanks to their powerful representational capabilities, deep learning models have succeeded to provide unprecedented results on many general purpose image processing tasks. However, when moving to domain specific problems, as in this case, the advantages with respect to traditional model-based approaches are much lesser clear-cut due to several contextual reasons. Scarcity of training data, lack of ground-truth, data shape variability, are some such factors that limit the generalization capacity of the state-of-the-art deep learning networks for hyperspectral pansharpening. To cope with these limitations, in this work we propose a new deep learning method which inherits a simple single-band unsupervised pansharpening model nested in a sequential band-wise adaptive scheme, where each band is pansharpened refining the model tuned on the preceding one. By doing so, a simple model is propagated along the wavelength dimension, adaptively and flexibly, with no need to have a fixed number of spectral bands, and, with no need to dispose of large, expensive and labeled training datasets. The proposed method achieves very good results on our datasets, outperforming both traditional and deep learning reference methods. The implementation of the proposed method can be found on https://github.com/giu-guarino/R-PNN

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
云木完成签到 ,获得积分10
刚刚
刚刚
insomnia417完成签到,获得积分0
2秒前
oooaini完成签到 ,获得积分10
3秒前
谐音梗别扣钱完成签到 ,获得积分10
3秒前
轻松的芯完成签到 ,获得积分0
3秒前
lengzixing完成签到,获得积分10
3秒前
小宋爱科研完成签到 ,获得积分10
3秒前
3秒前
刘辰完成签到 ,获得积分10
4秒前
4秒前
wsb76完成签到 ,获得积分10
4秒前
kaka完成签到,获得积分0
4秒前
5秒前
Li发布了新的文献求助10
6秒前
大龙哥886应助内向的绿采纳,获得10
6秒前
繁笙完成签到 ,获得积分10
6秒前
祁连山的熊猫完成签到 ,获得积分0
6秒前
一路生花碎西瓜完成签到 ,获得积分10
7秒前
吕半鬼完成签到,获得积分0
7秒前
大渣饼完成签到 ,获得积分10
7秒前
阿泽完成签到,获得积分10
7秒前
9秒前
jack完成签到,获得积分20
9秒前
蓝色天空完成签到,获得积分10
9秒前
爱听歌契完成签到 ,获得积分10
10秒前
XDSH完成签到 ,获得积分10
10秒前
Docgyj完成签到 ,获得积分0
11秒前
11秒前
平淡道天完成签到,获得积分10
11秒前
大发明家完成签到,获得积分10
11秒前
陶醉的蜜蜂完成签到 ,获得积分10
11秒前
gxh完成签到,获得积分10
12秒前
淡淡元蝶完成签到 ,获得积分10
12秒前
科研欢完成签到 ,获得积分10
12秒前
Ava应助Li采纳,获得10
12秒前
屠夫9441完成签到,获得积分10
13秒前
美好芳完成签到 ,获得积分10
13秒前
mawenxing完成签到,获得积分10
13秒前
弧光完成签到 ,获得积分0
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Electron Energy Loss Spectroscopy 1500
Tip-in balloon grenadoplasty for uncrossable chronic total occlusions 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5787687
求助须知:如何正确求助?哪些是违规求助? 5700927
关于积分的说明 15472461
捐赠科研通 4916025
什么是DOI,文献DOI怎么找? 2646061
邀请新用户注册赠送积分活动 1593768
关于科研通互助平台的介绍 1548046

今日热心研友

注:热心度 = 本日应助数 + 本日被采纳获取积分÷10