Band-wise Hyperspectral Image Pansharpening using CNN Model Propagation

高光谱成像 全色胶片 计算机科学 人工智能 深度学习 基本事实 像素 一般化 模式识别(心理学) 维数(图论) 图像分辨率 图像(数学) 计算机视觉 机器学习 数学 数学分析 纯数学
作者
Giuseppe Guarino,Matteo Ciotola,Gemine Vivone,Giuseppe Scarpa
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2311.06510
摘要

Hyperspectral pansharpening is receiving a growing interest since the last few years as testified by a large number of research papers and challenges. It consists in a pixel-level fusion between a lower-resolution hyperspectral datacube and a higher-resolution single-band image, the panchromatic image, with the goal of providing a hyperspectral datacube at panchromatic resolution. Thanks to their powerful representational capabilities, deep learning models have succeeded to provide unprecedented results on many general purpose image processing tasks. However, when moving to domain specific problems, as in this case, the advantages with respect to traditional model-based approaches are much lesser clear-cut due to several contextual reasons. Scarcity of training data, lack of ground-truth, data shape variability, are some such factors that limit the generalization capacity of the state-of-the-art deep learning networks for hyperspectral pansharpening. To cope with these limitations, in this work we propose a new deep learning method which inherits a simple single-band unsupervised pansharpening model nested in a sequential band-wise adaptive scheme, where each band is pansharpened refining the model tuned on the preceding one. By doing so, a simple model is propagated along the wavelength dimension, adaptively and flexibly, with no need to have a fixed number of spectral bands, and, with no need to dispose of large, expensive and labeled training datasets. The proposed method achieves very good results on our datasets, outperforming both traditional and deep learning reference methods. The implementation of the proposed method can be found on https://github.com/giu-guarino/R-PNN

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Orange应助wangckyt采纳,获得10
刚刚
devoel发布了新的文献求助10
1秒前
瓶盖的玉莹厨师长完成签到,获得积分10
1秒前
Kira发布了新的文献求助10
3秒前
哦o完成签到,获得积分10
5秒前
青城山下小星瞳完成签到,获得积分10
8秒前
御坂10576号完成签到,获得积分10
8秒前
9秒前
WuYiHHH完成签到,获得积分10
12秒前
12秒前
12秒前
13秒前
buno应助小董继续努力采纳,获得10
15秒前
summerer完成签到,获得积分10
15秒前
是小天呀完成签到 ,获得积分10
15秒前
不安忆寒发布了新的文献求助10
16秒前
所所应助仁清采纳,获得20
16秒前
Kraghc发布了新的文献求助100
17秒前
喜悦的天玉完成签到,获得积分10
18秒前
刘柑橘完成签到,获得积分10
18秒前
贪玩的秋柔应助南山南采纳,获得10
20秒前
脑洞疼应助吴宇杰采纳,获得10
20秒前
烟花应助anhao采纳,获得10
20秒前
甜美的煜祺完成签到,获得积分10
21秒前
21秒前
静静完成签到 ,获得积分10
22秒前
23秒前
24秒前
卧病i关注了科研通微信公众号
24秒前
碧蓝笑槐完成签到,获得积分20
24秒前
27秒前
27秒前
碧蓝笑槐发布了新的文献求助30
27秒前
28秒前
28秒前
29秒前
Lucas应助欣欣子采纳,获得10
29秒前
正直幼枫完成签到,获得积分20
29秒前
小董继续努力完成签到,获得积分20
30秒前
大头完成签到 ,获得积分10
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5604172
求助须知:如何正确求助?哪些是违规求助? 4688985
关于积分的说明 14857380
捐赠科研通 4697016
什么是DOI,文献DOI怎么找? 2541204
邀请新用户注册赠送积分活动 1507328
关于科研通互助平台的介绍 1471851