Improving biosensor accuracy and speed using dynamic signal change and theory-guided deep learning

生物传感器 计算机科学 人工智能 分析物 分类器(UML) 超参数 机器学习 模式识别(心理学) 材料科学 化学 物理化学 纳米技术
作者
Junru Zhang,Purna Srivatsa,Fazel Haq Ahmadzai,Yang Liu,Xuerui Song,Anuj Karpatne,Zhenyu Kong,Blake N. Johnson
出处
期刊:Biosensors and Bioelectronics [Elsevier]
卷期号:246: 115829-115829 被引量:2
标识
DOI:10.1016/j.bios.2023.115829
摘要

False results and time delay are longstanding challenges in biosensing. While classification models and deep learning may provide new opportunities for improving biosensor performance, such as measurement confidence and speed, it remains a challenge to ensure that predictions are explainable and consistent with domain knowledge. Here, we show that consistency of deep learning classification model predictions with domain knowledge in biosensing can be achieved by cost function supervision and enables rapid and accurate biosensing using the biosensor dynamic response. The impact and utility of the methodology were validated by rapid and accurate quantification of microRNA (let-7a) across the nanomolar (nM) to femtomolar (fM) concentration range using the dynamic response of cantilever biosensors. Data augmentation and cost function supervision based on the consistency of model predictions and experimental observations with the theory of surface-based biosensors improved the F1 score, precision, and recall of a recurrent neural network (RNN) classifier by an average of 13.8%. The theory-guided RNN (TGRNN) classifier enabled quantification of target analyte concentration and false results with an average prediction accuracy, precision, and recall of 98.5% using the initial transient or entire dynamic response, which is indicative of high prediction accuracy and low probability of false-negative and false-positive results. Classification scores were used to establish new relationships among biosensor performance characteristics (e.g., measurement confidence) and design parameters (e.g., inputs and hyperparameters of classification models and data acquisition parameters) that may be used for characterizing biosensor performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
rice0601完成签到,获得积分10
刚刚
1秒前
cc发布了新的文献求助10
1秒前
3秒前
4秒前
4秒前
weihan1113发布了新的文献求助10
5秒前
5秒前
小胡噗噗完成签到,获得积分20
5秒前
所所应助柯南采纳,获得10
6秒前
Fearless发布了新的文献求助10
6秒前
7秒前
KYT发布了新的文献求助10
8秒前
9秒前
崔文兴发布了新的文献求助10
9秒前
junzhu完成签到,获得积分10
10秒前
852应助mengtian采纳,获得30
10秒前
LXX发布了新的文献求助10
11秒前
12秒前
13秒前
13秒前
mengtian应助Pierce采纳,获得10
14秒前
cc完成签到,获得积分10
14秒前
ashes发布了新的文献求助100
16秒前
ding应助Bob采纳,获得10
16秒前
Pig-prodigy完成签到,获得积分10
18秒前
shi hui应助小胡噗噗采纳,获得10
18秒前
18秒前
蓝玉完成签到,获得积分10
19秒前
大鸣王潮完成签到 ,获得积分10
19秒前
Die发布了新的文献求助10
20秒前
爱吃百香果完成签到,获得积分20
21秒前
21秒前
Hello应助俭朴尔竹采纳,获得10
23秒前
23秒前
ashes完成签到,获得积分10
24秒前
B站萧亚轩完成签到,获得积分10
25秒前
汉堡包应助Fearless采纳,获得10
26秒前
27秒前
白华苍松发布了新的文献求助10
28秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3458734
求助须知:如何正确求助?哪些是违规求助? 3053505
关于积分的说明 9036831
捐赠科研通 2742695
什么是DOI,文献DOI怎么找? 1504509
科研通“疑难数据库(出版商)”最低求助积分说明 695319
邀请新用户注册赠送积分活动 694519