Artificial intelligence-aided detection of rail defects based on ultrasonic imaging data

计算机科学 人工智能 卷积神经网络 分类器(UML) 学习迁移 过程(计算) 支持向量机 模式识别(心理学) 精确性和召回率 人工神经网络 数据挖掘 操作系统
作者
Weitian Li,Jingru Wang,Xuanyang Qin,Guoqing Jing,Xiang Liu
出处
期刊:Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit [SAGE]
卷期号:238 (1): 118-127 被引量:2
标识
DOI:10.1177/09544097231214578
摘要

Railroads are one of society’s fundamental infrastructures, facilitating the transportation of passengers and goods over vast distances. Rail status data is immensely important for ensuring the safe and efficient operation of railroad networks. However, analyzing ultrasonic inspection data is a labor-intensive process and relies heavily on the expertise of experienced inspectors. To detect internal defects of the rail accurately and automatically, this paper proposes a customized image recognition method based on a convolutional neural network with limited B-scan rail image data collected within the industry. The proposed method uses EfficientNet-b7 as the backbone network to fully extract the B-scan rail image data features. With the help of transfer learning and data augmentation techniques, the backbone network is substantially enhanced so that it can understand high-level features of the object without being trained with large-scale B-scan image data. We establish a real-world internal rail defect dataset with 280 B-scan images and test our proposed method. The results reveal that the highest accuracy of the other mainstream CNN-based methods is 76.25% and the accuracy of the traditional method based on a support vector machine classifier trained with Tamura texture and LBP features is 60.00%. Our proposed EfficientNet-b7 model classifies rail defect B-scan images with an accuracy of 85.00%, precision of 84.71%, and recall of 85.00%. Compared to other rail internal defect detection methods, this method is more accurate. With the help of transfer learning and data augmentation, our proposed method achieves better performance and requires less data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
未改完成签到,获得积分10
刚刚
飞雪完成签到,获得积分10
1秒前
1秒前
wwx完成签到,获得积分10
2秒前
落红禹03完成签到,获得积分10
2秒前
花椒鱼发布了新的文献求助10
2秒前
负责湘完成签到,获得积分10
3秒前
3秒前
现代的自行车完成签到 ,获得积分10
3秒前
CipherSage应助xyh采纳,获得10
4秒前
4秒前
5秒前
buno应助执行正义采纳,获得10
5秒前
田様应助王小西采纳,获得10
5秒前
6秒前
共享精神应助yanghui采纳,获得10
6秒前
俭朴的皮卡丘完成签到 ,获得积分10
7秒前
wwx发布了新的文献求助10
7秒前
研友_8o5V2n发布了新的文献求助50
7秒前
流水巷发布了新的文献求助10
7秒前
迷迭香发布了新的文献求助10
8秒前
天天快乐应助刻苦的白昼采纳,获得10
8秒前
8秒前
9秒前
10秒前
渝州人应助科研通管家采纳,获得10
10秒前
华仔应助科研通管家采纳,获得10
10秒前
脑洞疼应助科研通管家采纳,获得10
10秒前
10秒前
科研通AI2S应助科研通管家采纳,获得10
11秒前
Lucas应助科研通管家采纳,获得10
11秒前
junhan发布了新的文献求助80
11秒前
Hello应助科研通管家采纳,获得10
11秒前
ding应助科研通管家采纳,获得10
11秒前
Jason应助科研通管家采纳,获得10
11秒前
FashionBoy应助科研通管家采纳,获得10
11秒前
8R60d8应助科研通管家采纳,获得20
11秒前
wanci应助科研通管家采纳,获得10
11秒前
传奇3应助科研通管家采纳,获得10
11秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
2-Acetyl-1-pyrroline: an important aroma component of cooked rice 500
The Paleoanthropology of Eastern Asia 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3174594
求助须知:如何正确求助?哪些是违规求助? 2825736
关于积分的说明 7954173
捐赠科研通 2486700
什么是DOI,文献DOI怎么找? 1325440
科研通“疑难数据库(出版商)”最低求助积分说明 634465
版权声明 602734