Artificial intelligence-aided detection of rail defects based on ultrasonic imaging data

计算机科学 人工智能 卷积神经网络 分类器(UML) 学习迁移 过程(计算) 支持向量机 模式识别(心理学) 精确性和召回率 人工神经网络 数据挖掘 操作系统
作者
Weitian Li,Jingru Wang,Xuanyang Qin,Guoqing Jing,Xiang Liu
出处
期刊:Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit [SAGE Publishing]
卷期号:238 (1): 118-127 被引量:6
标识
DOI:10.1177/09544097231214578
摘要

Railroads are one of society’s fundamental infrastructures, facilitating the transportation of passengers and goods over vast distances. Rail status data is immensely important for ensuring the safe and efficient operation of railroad networks. However, analyzing ultrasonic inspection data is a labor-intensive process and relies heavily on the expertise of experienced inspectors. To detect internal defects of the rail accurately and automatically, this paper proposes a customized image recognition method based on a convolutional neural network with limited B-scan rail image data collected within the industry. The proposed method uses EfficientNet-b7 as the backbone network to fully extract the B-scan rail image data features. With the help of transfer learning and data augmentation techniques, the backbone network is substantially enhanced so that it can understand high-level features of the object without being trained with large-scale B-scan image data. We establish a real-world internal rail defect dataset with 280 B-scan images and test our proposed method. The results reveal that the highest accuracy of the other mainstream CNN-based methods is 76.25% and the accuracy of the traditional method based on a support vector machine classifier trained with Tamura texture and LBP features is 60.00%. Our proposed EfficientNet-b7 model classifies rail defect B-scan images with an accuracy of 85.00%, precision of 84.71%, and recall of 85.00%. Compared to other rail internal defect detection methods, this method is more accurate. With the help of transfer learning and data augmentation, our proposed method achieves better performance and requires less data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
Oliver完成签到 ,获得积分10
5秒前
decade发布了新的文献求助10
11秒前
我爱吃菜发布了新的文献求助10
12秒前
houxy完成签到 ,获得积分10
13秒前
乐乐应助个性紫雪采纳,获得10
13秒前
16秒前
zhuxing完成签到 ,获得积分10
17秒前
埃特纳氏完成签到 ,获得积分0
17秒前
悦耳的城完成签到 ,获得积分10
18秒前
cox完成签到 ,获得积分10
20秒前
哈哈完成签到 ,获得积分10
21秒前
我独舞完成签到 ,获得积分10
22秒前
崔崔发布了新的文献求助10
22秒前
decade完成签到,获得积分10
26秒前
dingdign完成签到,获得积分10
27秒前
ru完成签到 ,获得积分10
27秒前
ho发布了新的文献求助30
27秒前
lhn完成签到 ,获得积分10
28秒前
goodsheep完成签到 ,获得积分10
28秒前
CLZ完成签到 ,获得积分10
29秒前
34秒前
英俊雅柏完成签到,获得积分10
40秒前
七七完成签到 ,获得积分10
43秒前
CMUSK完成签到,获得积分10
47秒前
47秒前
我爱吃菜完成签到 ,获得积分10
51秒前
SisiZheng完成签到,获得积分20
51秒前
收费完成签到 ,获得积分10
52秒前
hwl26完成签到,获得积分10
53秒前
雪花完成签到 ,获得积分10
54秒前
追风筝的少女完成签到 ,获得积分10
58秒前
彩色的过客完成签到 ,获得积分10
1分钟前
饱满芷卉完成签到,获得积分10
1分钟前
Doctor.TANG完成签到 ,获得积分10
1分钟前
房房不慌完成签到 ,获得积分10
1分钟前
陙兂完成签到,获得积分10
1分钟前
Hellowa完成签到,获得积分10
1分钟前
梦游天吟留别完成签到,获得积分10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5293935
求助须知:如何正确求助?哪些是违规求助? 4443973
关于积分的说明 13831812
捐赠科研通 4327924
什么是DOI,文献DOI怎么找? 2375804
邀请新用户注册赠送积分活动 1371055
关于科研通互助平台的介绍 1336111