Artificial intelligence-aided detection of rail defects based on ultrasonic imaging data

计算机科学 人工智能 卷积神经网络 分类器(UML) 学习迁移 过程(计算) 支持向量机 模式识别(心理学) 精确性和召回率 人工神经网络 数据挖掘 操作系统
作者
Weitian Li,Jingru Wang,Xuanyang Qin,Guoqing Jing,Xiang Liu
出处
期刊:Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit [SAGE]
卷期号:238 (1): 118-127 被引量:12
标识
DOI:10.1177/09544097231214578
摘要

Railroads are one of society’s fundamental infrastructures, facilitating the transportation of passengers and goods over vast distances. Rail status data is immensely important for ensuring the safe and efficient operation of railroad networks. However, analyzing ultrasonic inspection data is a labor-intensive process and relies heavily on the expertise of experienced inspectors. To detect internal defects of the rail accurately and automatically, this paper proposes a customized image recognition method based on a convolutional neural network with limited B-scan rail image data collected within the industry. The proposed method uses EfficientNet-b7 as the backbone network to fully extract the B-scan rail image data features. With the help of transfer learning and data augmentation techniques, the backbone network is substantially enhanced so that it can understand high-level features of the object without being trained with large-scale B-scan image data. We establish a real-world internal rail defect dataset with 280 B-scan images and test our proposed method. The results reveal that the highest accuracy of the other mainstream CNN-based methods is 76.25% and the accuracy of the traditional method based on a support vector machine classifier trained with Tamura texture and LBP features is 60.00%. Our proposed EfficientNet-b7 model classifies rail defect B-scan images with an accuracy of 85.00%, precision of 84.71%, and recall of 85.00%. Compared to other rail internal defect detection methods, this method is more accurate. With the help of transfer learning and data augmentation, our proposed method achieves better performance and requires less data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
合适尔蝶发布了新的文献求助10
刚刚
温暖梦玉发布了新的文献求助30
刚刚
张兰兰发布了新的文献求助10
刚刚
Ava应助GGBOND采纳,获得10
刚刚
善学以致用应助小猪乔治采纳,获得10
刚刚
蔚山小猫完成签到,获得积分20
刚刚
安静的剑发布了新的文献求助10
1秒前
ding应助薄荷采纳,获得10
1秒前
星辰大海应助快乐达不刘采纳,获得10
1秒前
寄托完成签到 ,获得积分10
1秒前
1秒前
阑干发布了新的文献求助10
2秒前
2秒前
量子星尘发布了新的文献求助10
2秒前
wang发布了新的文献求助10
3秒前
3秒前
俭朴大碗完成签到,获得积分10
3秒前
无情的踏歌应助mmyhn采纳,获得10
3秒前
orixero应助悬铃木采纳,获得10
3秒前
engine完成签到,获得积分10
4秒前
sweet完成签到,获得积分20
4秒前
迟迟池完成签到 ,获得积分10
4秒前
4秒前
5秒前
易之皙完成签到,获得积分10
5秒前
可爱的函函应助PCEEN采纳,获得10
5秒前
6秒前
何雨鑫完成签到,获得积分10
6秒前
1111应助yjm采纳,获得10
6秒前
tianjiu发布了新的文献求助10
7秒前
在水一方应助夕夕不吃菜采纳,获得10
7秒前
科研通AI2S应助渔婆采纳,获得10
7秒前
Eureka完成签到,获得积分10
7秒前
哈哈发布了新的文献求助10
8秒前
8秒前
CC发布了新的文献求助20
8秒前
鳗鱼煜祺发布了新的文献求助10
8秒前
Macfee完成签到,获得积分10
8秒前
9秒前
gaoyunfeng完成签到,获得积分10
9秒前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5585532
求助须知:如何正确求助?哪些是违规求助? 4669292
关于积分的说明 14776112
捐赠科研通 4618063
什么是DOI,文献DOI怎么找? 2530567
邀请新用户注册赠送积分活动 1499302
关于科研通互助平台的介绍 1467697