Artificial intelligence-aided detection of rail defects based on ultrasonic imaging data

计算机科学 人工智能 卷积神经网络 分类器(UML) 学习迁移 过程(计算) 支持向量机 模式识别(心理学) 精确性和召回率 人工神经网络 数据挖掘 操作系统
作者
Weitian Li,Jingru Wang,Xuanyang Qin,Guoqing Jing,Xiang Liu
出处
期刊:Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit [SAGE]
卷期号:238 (1): 118-127 被引量:6
标识
DOI:10.1177/09544097231214578
摘要

Railroads are one of society’s fundamental infrastructures, facilitating the transportation of passengers and goods over vast distances. Rail status data is immensely important for ensuring the safe and efficient operation of railroad networks. However, analyzing ultrasonic inspection data is a labor-intensive process and relies heavily on the expertise of experienced inspectors. To detect internal defects of the rail accurately and automatically, this paper proposes a customized image recognition method based on a convolutional neural network with limited B-scan rail image data collected within the industry. The proposed method uses EfficientNet-b7 as the backbone network to fully extract the B-scan rail image data features. With the help of transfer learning and data augmentation techniques, the backbone network is substantially enhanced so that it can understand high-level features of the object without being trained with large-scale B-scan image data. We establish a real-world internal rail defect dataset with 280 B-scan images and test our proposed method. The results reveal that the highest accuracy of the other mainstream CNN-based methods is 76.25% and the accuracy of the traditional method based on a support vector machine classifier trained with Tamura texture and LBP features is 60.00%. Our proposed EfficientNet-b7 model classifies rail defect B-scan images with an accuracy of 85.00%, precision of 84.71%, and recall of 85.00%. Compared to other rail internal defect detection methods, this method is more accurate. With the help of transfer learning and data augmentation, our proposed method achieves better performance and requires less data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zx完成签到 ,获得积分10
刚刚
1秒前
kyle完成签到 ,获得积分10
2秒前
星流xx完成签到 ,获得积分10
2秒前
2秒前
郭帅完成签到,获得积分10
2秒前
小聖完成签到 ,获得积分10
4秒前
斯文的依白完成签到,获得积分10
5秒前
6秒前
佳期如梦完成签到 ,获得积分10
7秒前
明天完成签到 ,获得积分10
8秒前
麦丰发布了新的文献求助10
11秒前
菲菲公主完成签到,获得积分10
11秒前
量子星尘发布了新的文献求助10
12秒前
测量幽冥完成签到 ,获得积分10
12秒前
13秒前
菲菲公主发布了新的文献求助10
13秒前
13秒前
Xu_W卜完成签到,获得积分10
14秒前
15秒前
Ray发布了新的文献求助10
16秒前
zyyyyyyyy完成签到 ,获得积分10
17秒前
17秒前
GOD伟完成签到,获得积分0
18秒前
谢谢谢谢谢谢谢谢完成签到 ,获得积分10
18秒前
怕孤独的问芙完成签到 ,获得积分10
19秒前
王艺霖发布了新的文献求助10
20秒前
bo完成签到,获得积分10
21秒前
22秒前
风清扬发布了新的文献求助10
24秒前
Freddy完成签到 ,获得积分10
26秒前
26秒前
稳重岩完成签到 ,获得积分10
29秒前
幸运咖发布了新的文献求助30
30秒前
30秒前
写个锤子完成签到,获得积分10
36秒前
36秒前
36秒前
37秒前
熙梓日记完成签到,获得积分10
39秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
The International Law of the Sea (fourth edition) 800
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5418652
求助须知:如何正确求助?哪些是违规求助? 4534317
关于积分的说明 14143457
捐赠科研通 4450523
什么是DOI,文献DOI怎么找? 2441286
邀请新用户注册赠送积分活动 1433019
关于科研通互助平台的介绍 1410438