An optimization approach for environmental control using quantum genetic algorithm and support vector regression

均方误差 能量(信号处理) 功能(生物学) 支持向量机 最优控制 算法 温室 最大化 能源消耗 遗传算法 数学优化 数学 计算机科学 统计 人工智能 生态学 生物 农学 进化生物学
作者
Miao Lu,Pan Gao,Huimin Li,Zhangtong Sun,Ning Yang,Jin Hu
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:215: 108432-108432 被引量:2
标识
DOI:10.1016/j.compag.2023.108432
摘要

Photosynthesis serves as the foundation for vegetable crop yield. It is crucial to appropriately regulate the environmental parameters associated with photosynthesis to ensure efficient production and energy conservation in plant factories or greenhouses. In this research, we proposed a novel optimization approach for determining the target value of environmental control, aiming to balance plant growth and energy cost. By employing hydroponic lettuces as experimental samples, we measured their photosynthetic rates (Pn) under various combinations of four environmental factors: air temperature (AT), nutrient solution temperature (NST), photon flux density (PFD), and CO2 concentration ([CO2]). The photosynthetic data were combined with the support vector regression algorithm to develop a Pn prediction model. This model achieved a coefficient of determination of 0.9748, a root mean square error value of 0.9302 µmol∙m−2∙s−1, and a mean absolute error value of 1.1813 µmol∙m−2∙s−1. The model provide data for subsequent environmental control. The quantum genetic algorithm (QGA) was employed to search the optimal Pn and corresponding PFD, [CO2], and NST at different ATs. The fitness function for QGA was developed considering both the Pn and the energy consumption. This approach could calculate the target environments (PFD, [CO2], and NST) for any given AT. Compared with the Pn maximization approach, the energy cost-saving rate was 1.5 to 3.5 times higher than the Pn loss. The proposed approach could quickly and accurately determine an optimal environmental control target value, outperforming other approaches in complexity and generality. Thus, this study offers an elegant approach to environmental control for hydroponic cultivation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
荒年完成签到,获得积分10
1秒前
魁梧的曼凡完成签到,获得积分10
1秒前
2秒前
研一小刘发布了新的文献求助10
2秒前
陈莹完成签到,获得积分20
2秒前
qi发布了新的文献求助30
3秒前
3秒前
Wyan完成签到,获得积分20
3秒前
我是老大应助通~采纳,获得10
4秒前
Jenny应助淡定紫菱采纳,获得10
4秒前
逆流的鱼完成签到 ,获得积分10
5秒前
5秒前
liuqian完成签到,获得积分10
6秒前
Hou完成签到 ,获得积分10
6秒前
反杀闰土的猹完成签到 ,获得积分20
6秒前
所所应助cc采纳,获得10
7秒前
邵裘完成签到,获得积分10
7秒前
丘比特应助yin采纳,获得10
7秒前
8秒前
8秒前
8秒前
希望天下0贩的0应助sss采纳,获得20
8秒前
拼搏向前发布了新的文献求助10
8秒前
紫罗兰花海完成签到 ,获得积分10
9秒前
琪琪完成签到,获得积分10
10秒前
10秒前
爆米花应助高兴藏花采纳,获得10
10秒前
orixero应助Rrr采纳,获得10
10秒前
11秒前
张今天也要做科研呀完成签到,获得积分10
11秒前
humorlife完成签到,获得积分10
11秒前
打打应助给我找采纳,获得10
12秒前
酷波er应助谦让的含海采纳,获得10
12秒前
12秒前
shrike发布了新的文献求助10
12秒前
心灵美半邪完成签到 ,获得积分10
14秒前
wanci应助星晴遇见花海采纳,获得10
14秒前
14秒前
MILL完成签到,获得积分20
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794