Efficient nnU-Net for Brain Tumor Segmentation

计算机科学 分割 编码器 卷积(计算机科学) 瓶颈 深度学习 光学(聚焦) 计算复杂性理论 人工智能 模式识别(心理学) 算法 人工神经网络 操作系统 光学 物理 嵌入式系统
作者
Tirivangani Magadza,Serestina Viriri
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:11: 126386-126397 被引量:7
标识
DOI:10.1109/access.2023.3329517
摘要

Brain tumors are one of the leading causes of death in adults. They come in various shapes and sizes from one patient to another. Sometimes they infiltrate surrounding normal tissues, making it challenging to delineate tumor boundaries. Despite extensive research, the prognosis is still low. Accurate and timely brain tumor segmentation is critical for treatment planning and disease progression monitoring. Automatic segmentation of brain tumors using deep learning methods has been shown to produce high-quality and reproducible segmentation results. Specifically, the encoder-decoder networks, like the U-Nets, have dominated the previous BraTS Challenges because of their superior performance. Due to the importance of high-quality segmentation, most state-of-the-art models focus more on pushing the boundaries of the current methods at the expense of computational complexity. The computational budget for practical applications is minimal, requiring technological solutions that balance accuracy and available computational resources. In this study, we extended the basic U-Net model in the nnU-Net by replacing the basic 3D convolution blocks with bottleneck units utilizing depthwise-separable convolutions. Furthermore, we introduced the shuffle attention mechanism in the skip connections to compensate for the slight loss in segmentation accuracy due to a reduction in number of parameters. Extensive experimental results of the BraTS 2020 dataset reviewed that the proposed modifications achieved competitive performance at a lower computational cost.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
solarlad应助若水采纳,获得50
1秒前
嗨哈尼发布了新的文献求助10
1秒前
2秒前
坚定的若枫完成签到,获得积分10
3秒前
荼柒完成签到,获得积分10
3秒前
3秒前
4秒前
wangyu发布了新的文献求助10
5秒前
6秒前
6秒前
7秒前
嘴角上扬完成签到 ,获得积分10
8秒前
桐安发布了新的文献求助10
8秒前
huanir99发布了新的文献求助10
9秒前
柏代桃发布了新的文献求助10
9秒前
江河JT完成签到 ,获得积分10
9秒前
顺心孤云发布了新的文献求助10
9秒前
10秒前
10秒前
interest-li完成签到,获得积分10
12秒前
13秒前
13秒前
研友_8DAv0L发布了新的文献求助10
13秒前
zhouzhou发布了新的文献求助10
13秒前
hhh发布了新的文献求助20
13秒前
qian完成签到,获得积分10
13秒前
荼柒完成签到,获得积分10
14秒前
虚幻的冷松完成签到,获得积分10
14秒前
八点必起发布了新的文献求助10
14秒前
科研小白发布了新的文献求助10
14秒前
17秒前
思源应助魅雪霓采纳,获得10
17秒前
TURBO发布了新的文献求助10
18秒前
19秒前
Yi发布了新的文献求助30
20秒前
20秒前
领导范儿应助zhangling采纳,获得10
20秒前
21秒前
21秒前
21秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3160777
求助须知:如何正确求助?哪些是违规求助? 2811863
关于积分的说明 7893780
捐赠科研通 2470702
什么是DOI,文献DOI怎么找? 1315762
科研通“疑难数据库(出版商)”最低求助积分说明 631003
版权声明 602053