A brain metastasis prediction model in women with breast cancer

医学 乳腺癌 内科学 队列 恶性肿瘤 雌激素受体 肿瘤科 癌症 曲线下面积 生物标志物 脑转移 回顾性队列研究 弗雷明翰风险评分 转移 疾病 化学 生物化学
作者
Bernardo Cacho‐Díaz,A. Meneses-Garcia,Sergio Iván Valdés‐Ferrer,Nancy Reynoso‐Noverón
出处
期刊:Cancer Epidemiology [Elsevier]
卷期号:86: 102448-102448
标识
DOI:10.1016/j.canep.2023.102448
摘要

Breast cancer (BC) is a leading cause of mortality and the most frequent malignancy in women, and most deaths are due to metastatic disease, particularly brain metastases (BM). Currently, no biomarker or prediction model is used to predict BM accurately. The objective was to generate a BM prediction model from variables obtained at BC diagnosis. A retrospective cohort of women with BC diagnosed from 2009 to 2020 at a single center was divided into a training dataset (TD) and a validation dataset (VD). The prediction model was generated in the TD, and its performance was measured in the VD using the area under the curve (AUC) and C-statistic. The cohort (n = 5009) was divided into a TD (n = 3339) and a VD (n = 1670). In the TD, the model with the best performance (lowest AIC) was built with the following variables: age, estrogen receptor status, tumor size, axillary adenopathy, anatomic clinical stage, Ki-67 expression, and Scarff–Bloom–Richardson score. This model had an AUC of 0.79 (95%CI, 0.76–0.82; p < 0.0001) in the TD. The 10-fold cross-validation showed the good stability of the model. The model displayed an AUC of 0.81 (95%CI, 0.77–0.85; P < 0.0001) in the VD. Four groups, according to the risk of BM, were generated. In the low-risk group, 1.2% were diagnosed with BM (reference); in the medium-risk group, 5.0% [HR 4.01 (95%CI, 1.8 – 8.8); P < 0.0001); in the high-risk group, 8.5% [HR 8.33 (95%CI, 4.1–17.1); P < 0.0001]; and in the very high-risk group, 23.7% [HR 29.72 (95%CI, 14.9 – 59.1); P < 0.0001]. This prediction model built with clinical and pathological variables at BC diagnosis demonstrated robust performance in determining the individual risk of BM among patients with BC, but external validation in different cohorts is needed.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
高灵雨完成签到,获得积分10
1秒前
小元完成签到,获得积分10
1秒前
夏秀鑫完成签到,获得积分10
1秒前
MAVS完成签到,获得积分10
1秒前
Clarkli完成签到 ,获得积分10
1秒前
烂漫破茧完成签到,获得积分10
1秒前
zhang完成签到,获得积分10
2秒前
Qq完成签到,获得积分20
2秒前
raininjuly应助工作还是工作采纳,获得10
2秒前
tsai完成签到,获得积分10
2秒前
3秒前
sunflower完成签到,获得积分0
3秒前
量子星尘发布了新的文献求助10
3秒前
yang完成签到,获得积分10
3秒前
乐乐应助cherish'采纳,获得10
3秒前
英姑应助kouke80采纳,获得30
3秒前
asdf完成签到,获得积分10
4秒前
4秒前
4秒前
Fezco完成签到,获得积分10
5秒前
犹豫的世倌完成签到,获得积分10
5秒前
空白格完成签到 ,获得积分10
5秒前
6秒前
完美世界应助受伤棉花糖采纳,获得10
6秒前
Daisy发布了新的文献求助10
6秒前
6秒前
简单的涵阳完成签到 ,获得积分10
6秒前
英俊的铭应助满锅采纳,获得10
6秒前
Wendy完成签到,获得积分10
6秒前
WN发布了新的文献求助10
7秒前
鲈鱼完成签到,获得积分10
7秒前
磨人的老妖精完成签到,获得积分10
8秒前
火火完成签到,获得积分10
8秒前
yy完成签到,获得积分10
8秒前
pyrene完成签到 ,获得积分10
9秒前
公冶菲鹰发布了新的文献求助10
9秒前
热热完成签到,获得积分10
9秒前
zzz完成签到 ,获得积分10
9秒前
Jared应助黎黎采纳,获得10
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573926
求助须知:如何正确求助?哪些是违规求助? 4660203
关于积分的说明 14728382
捐赠科研通 4599980
什么是DOI,文献DOI怎么找? 2524638
邀请新用户注册赠送积分活动 1494989
关于科研通互助平台的介绍 1465005