A brain metastasis prediction model in women with breast cancer

医学 乳腺癌 内科学 队列 恶性肿瘤 雌激素受体 肿瘤科 癌症 曲线下面积 生物标志物 脑转移 回顾性队列研究 弗雷明翰风险评分 转移 疾病 化学 生物化学
作者
Bernardo Cacho‐Díaz,A. Meneses-Garcia,Sergio Iván Valdés‐Ferrer,Nancy Reynoso‐Noverón
出处
期刊:Cancer Epidemiology [Elsevier BV]
卷期号:86: 102448-102448
标识
DOI:10.1016/j.canep.2023.102448
摘要

Breast cancer (BC) is a leading cause of mortality and the most frequent malignancy in women, and most deaths are due to metastatic disease, particularly brain metastases (BM). Currently, no biomarker or prediction model is used to predict BM accurately. The objective was to generate a BM prediction model from variables obtained at BC diagnosis. A retrospective cohort of women with BC diagnosed from 2009 to 2020 at a single center was divided into a training dataset (TD) and a validation dataset (VD). The prediction model was generated in the TD, and its performance was measured in the VD using the area under the curve (AUC) and C-statistic. The cohort (n = 5009) was divided into a TD (n = 3339) and a VD (n = 1670). In the TD, the model with the best performance (lowest AIC) was built with the following variables: age, estrogen receptor status, tumor size, axillary adenopathy, anatomic clinical stage, Ki-67 expression, and Scarff–Bloom–Richardson score. This model had an AUC of 0.79 (95%CI, 0.76–0.82; p < 0.0001) in the TD. The 10-fold cross-validation showed the good stability of the model. The model displayed an AUC of 0.81 (95%CI, 0.77–0.85; P < 0.0001) in the VD. Four groups, according to the risk of BM, were generated. In the low-risk group, 1.2% were diagnosed with BM (reference); in the medium-risk group, 5.0% [HR 4.01 (95%CI, 1.8 – 8.8); P < 0.0001); in the high-risk group, 8.5% [HR 8.33 (95%CI, 4.1–17.1); P < 0.0001]; and in the very high-risk group, 23.7% [HR 29.72 (95%CI, 14.9 – 59.1); P < 0.0001]. This prediction model built with clinical and pathological variables at BC diagnosis demonstrated robust performance in determining the individual risk of BM among patients with BC, but external validation in different cohorts is needed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
JamesHao发布了新的文献求助10
2秒前
2秒前
在水一方应助Muhammad采纳,获得10
3秒前
3秒前
3秒前
3秒前
千万雷同发布了新的文献求助10
4秒前
木桶人plus完成签到 ,获得积分10
4秒前
4秒前
周雪艳发布了新的文献求助10
5秒前
可耐的黄豆关注了科研通微信公众号
5秒前
waye131发布了新的文献求助20
6秒前
6秒前
请叫我风吹麦浪应助机器采纳,获得10
6秒前
袁庚完成签到 ,获得积分10
6秒前
6秒前
潇洒的土豆完成签到,获得积分10
6秒前
smottom应助细心的靖巧采纳,获得10
7秒前
7秒前
GC驳回了乐乐应助
7秒前
yar应助科研通管家采纳,获得10
7秒前
毛豆爸爸应助科研通管家采纳,获得20
7秒前
7秒前
7秒前
Doreen发布了新的文献求助10
7秒前
7秒前
李健应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
yar应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
东木应助科研通管家采纳,获得20
7秒前
慕青应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
123完成签到,获得积分10
8秒前
8秒前
李希完成签到,获得积分10
8秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Effective Learning and Mental Wellbeing 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3974943
求助须知:如何正确求助?哪些是违规求助? 3519467
关于积分的说明 11198482
捐赠科研通 3255728
什么是DOI,文献DOI怎么找? 1797904
邀请新用户注册赠送积分活动 877261
科研通“疑难数据库(出版商)”最低求助积分说明 806224