A brain metastasis prediction model in women with breast cancer

医学 乳腺癌 内科学 队列 恶性肿瘤 雌激素受体 肿瘤科 癌症 曲线下面积 生物标志物 脑转移 回顾性队列研究 弗雷明翰风险评分 转移 疾病 化学 生物化学
作者
Bernardo Cacho‐Díaz,A. Meneses-Garcia,Sergio Iván Valdés‐Ferrer,Nancy Reynoso‐Noverón
出处
期刊:Cancer Epidemiology [Elsevier]
卷期号:86: 102448-102448
标识
DOI:10.1016/j.canep.2023.102448
摘要

Breast cancer (BC) is a leading cause of mortality and the most frequent malignancy in women, and most deaths are due to metastatic disease, particularly brain metastases (BM). Currently, no biomarker or prediction model is used to predict BM accurately. The objective was to generate a BM prediction model from variables obtained at BC diagnosis. A retrospective cohort of women with BC diagnosed from 2009 to 2020 at a single center was divided into a training dataset (TD) and a validation dataset (VD). The prediction model was generated in the TD, and its performance was measured in the VD using the area under the curve (AUC) and C-statistic. The cohort (n = 5009) was divided into a TD (n = 3339) and a VD (n = 1670). In the TD, the model with the best performance (lowest AIC) was built with the following variables: age, estrogen receptor status, tumor size, axillary adenopathy, anatomic clinical stage, Ki-67 expression, and Scarff–Bloom–Richardson score. This model had an AUC of 0.79 (95%CI, 0.76–0.82; p < 0.0001) in the TD. The 10-fold cross-validation showed the good stability of the model. The model displayed an AUC of 0.81 (95%CI, 0.77–0.85; P < 0.0001) in the VD. Four groups, according to the risk of BM, were generated. In the low-risk group, 1.2% were diagnosed with BM (reference); in the medium-risk group, 5.0% [HR 4.01 (95%CI, 1.8 – 8.8); P < 0.0001); in the high-risk group, 8.5% [HR 8.33 (95%CI, 4.1–17.1); P < 0.0001]; and in the very high-risk group, 23.7% [HR 29.72 (95%CI, 14.9 – 59.1); P < 0.0001]. This prediction model built with clinical and pathological variables at BC diagnosis demonstrated robust performance in determining the individual risk of BM among patients with BC, but external validation in different cohorts is needed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
发发发完成签到,获得积分10
3秒前
宋丽娟完成签到,获得积分10
3秒前
6秒前
11秒前
11秒前
NPC发布了新的文献求助20
11秒前
12秒前
斯文败类应助浩铭采纳,获得10
12秒前
科研通AI2S应助001采纳,获得10
14秒前
14秒前
哭泣若翠发布了新的文献求助10
15秒前
雨后关注了科研通微信公众号
15秒前
今后应助坚强小玉采纳,获得10
17秒前
17秒前
月yue发布了新的文献求助10
18秒前
朴实凡柔发布了新的文献求助10
20秒前
20秒前
22秒前
23秒前
追寻的山晴完成签到,获得积分10
24秒前
25秒前
bin发布了新的文献求助10
25秒前
研友_nxwmeL发布了新的文献求助10
28秒前
skysleeper发布了新的文献求助10
29秒前
29秒前
29秒前
29秒前
无奈的凡双完成签到,获得积分10
30秒前
30秒前
kk发布了新的文献求助10
30秒前
31秒前
31秒前
31秒前
zz发布了新的文献求助150
34秒前
YYJ发布了新的文献求助10
34秒前
喔喔完成签到,获得积分10
34秒前
浩铭发布了新的文献求助10
35秒前
35秒前
yy发布了新的文献求助10
35秒前
Lucas应助kk采纳,获得10
36秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
Becoming: An Introduction to Jung's Concept of Individuation 600
Evolution 3rd edition 500
Die Gottesanbeterin: Mantis religiosa: 656 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3171135
求助须知:如何正确求助?哪些是违规求助? 2822063
关于积分的说明 7937837
捐赠科研通 2482500
什么是DOI,文献DOI怎么找? 1322565
科研通“疑难数据库(出版商)”最低求助积分说明 633669
版权声明 602627