Speech emotion recognition approaches: A systematic review

计算机科学 稳健性(进化) 判别式 预处理器 人工智能 语音识别 情感计算 领域(数学) 机器学习 特征提取 支持向量机 生物化学 化学 数学 纯数学 基因
作者
Ahlam Hashem,Muhammad Arif,Manal Alghamdi
出处
期刊:Speech Communication [Elsevier]
卷期号:154: 102974-102974 被引量:15
标识
DOI:10.1016/j.specom.2023.102974
摘要

The speech emotion recognition (SER) field has been active since it became a crucial feature in advanced Human–Computer Interaction (HCI), and wide real-life applications use it. In recent years, numerous SER systems have been covered by researchers, including the availability of appropriate emotional databases, selecting robustness features, and applying suitable classifiers using Machine Learning (ML) and Deep Learning (DL). Deep models proved to perform more accurately for SER than conventional ML techniques. Nevertheless, SER is yet challenging for classification where to separate similar emotional patterns; it needs a highly discriminative feature representation. For this purpose, this survey aims to critically analyze what is being done in this field of research in light of previous studies that aim to recognize emotions using speech audio in different aspects and review the current state of SER using DL. Through a systematic literature review whereby searching selected keywords from 2012–2022, 96 papers were extracted and covered the most current findings and directions. Specifically, we covered the database (acted, evoked, and natural) and features (prosodic, spectral, voice quality, and teager energy operator), the necessary preprocessing steps. Furthermore, different DL models and their performance are examined in depth. Based on our review, we also suggested SER aspects that could be considered in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Orange应助liudongping921采纳,获得10
1秒前
1秒前
思源应助Son4904采纳,获得10
2秒前
2秒前
消炎药完成签到,获得积分10
2秒前
5秒前
5秒前
芝士芝士发布了新的文献求助10
5秒前
6秒前
gy79210发布了新的文献求助10
6秒前
8秒前
jin完成签到,获得积分20
8秒前
游01发布了新的文献求助10
9秒前
11秒前
11秒前
14秒前
ljc发布了新的文献求助10
15秒前
追寻的筝发布了新的文献求助10
15秒前
JSM发布了新的文献求助500
16秒前
16秒前
皮皮发布了新的文献求助10
17秒前
gy79210发布了新的文献求助10
20秒前
ZC发布了新的文献求助10
20秒前
吃光月亮完成签到,获得积分10
20秒前
T9的梦应助沫沫采纳,获得10
21秒前
万能图书馆应助深林盛世采纳,获得10
23秒前
zouxing发布了新的文献求助10
24秒前
kylin完成签到,获得积分10
27秒前
尼莫完成签到,获得积分10
28秒前
科研通AI2S应助追寻的筝采纳,获得10
28秒前
xiaode发布了新的文献求助10
28秒前
ALLon完成签到 ,获得积分10
29秒前
32秒前
36秒前
36秒前
寒江月完成签到 ,获得积分10
38秒前
深林盛世发布了新的文献求助10
39秒前
yy完成签到,获得积分10
39秒前
热情嘉懿发布了新的文献求助10
41秒前
小马甲应助科研通管家采纳,获得10
41秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1200
BIOLOGY OF NON-CHORDATES 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
Zeitschrift für Orient-Archäologie 500
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3352731
求助须知:如何正确求助?哪些是违规求助? 2977735
关于积分的说明 8681231
捐赠科研通 2658733
什么是DOI,文献DOI怎么找? 1455921
科研通“疑难数据库(出版商)”最低求助积分说明 674158
邀请新用户注册赠送积分活动 664801