Hysteresis-free high mobility graphene encapsulated in tungsten disulfide

石墨烯 材料科学 二硫化钨 磁滞 电子迁移率 化学气相沉积 纳米技术 光电子学 二硫化钼 凝聚态物理 复合材料 冶金 物理
作者
Karuppasamy Soundarapandian,Domenico De Fazio,Francisco Bernal‐Texca,Rebecca Hoffmann,Matteo Ceccanti,S. L. De Bonis,Sefaattin Tongay,Frank H. L. Koppens
出处
期刊:Applied Physics Letters [American Institute of Physics]
卷期号:123 (6)
标识
DOI:10.1063/5.0151273
摘要

High mobility is a crucial requirement for a large variety of electronic device applications. The state of the art for high-quality graphene devices is based on heterostructures made with graphene encapsulated in >40 nm-thick flakes of hexagonal boron nitride (hBN). Unfortunately, scaling up multilayer hBN while precisely controlling the number of layers remains an outstanding challenge, resulting in a rough material unable to enhance the mobility of graphene. This leads to the pursuit of alternative, scalable materials, which can be used as substrates and encapsulants for graphene. Tungsten disulfide (WS2) is a transition metal dichalcogenide, which was grown in large (∼mm-size) multi-layers by chemical vapor deposition. However, the resistance vs gate voltage characteristics when gating graphene through WS2 exhibit largely hysteretic shifts of the charge neutrality point on the order of Δn∼ 3 × 1011 cm−2, hindering the use of WS2 as a reliable encapsulant. The hysteresis originates due to the charge traps from sulfur vacancies present in WS2. In this work, we report the use of WS2 as a substrate and overcome the hysteresis issues by chemically treating WS2 with a super-acid, which passivates these vacancies and strips the surface from contaminants. The hysteresis is significantly reduced by about two orders of magnitude, down to values as low as Δn∼ 2 × 109 cm−2, while the room-temperature mobility of WS2-encapsulated graphene is as high as ∼62 × 103 cm2 V−1 s−1 at a carrier density of n ∼ 1 ×1012 cm−2. Our results promote WS2 as a valid alternative to hBN as an encapsulant for high-performance graphene devices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
小熊发布了新的文献求助10
1秒前
2秒前
hode完成签到,获得积分20
2秒前
完美世界应助Willa采纳,获得10
3秒前
5秒前
22222发布了新的文献求助10
5秒前
5秒前
hode发布了新的文献求助10
6秒前
寂寞的白筠完成签到,获得积分10
9秒前
yhh0624发布了新的文献求助10
9秒前
AllenXia发布了新的文献求助10
10秒前
10秒前
11秒前
完美世界应助王老师采纳,获得10
14秒前
mmddlj完成签到 ,获得积分10
15秒前
15秒前
15秒前
wzx发布了新的文献求助10
15秒前
郭n完成签到 ,获得积分10
16秒前
16秒前
19秒前
余烬完成签到,获得积分10
19秒前
科研通AI5应助史迪奇采纳,获得30
20秒前
小孙孙发布了新的文献求助20
21秒前
22秒前
TRY发布了新的文献求助10
23秒前
顾矜应助自然的敏采纳,获得30
25秒前
淡淡816完成签到,获得积分10
26秒前
李李发布了新的文献求助10
27秒前
28秒前
自由的水绿完成签到 ,获得积分10
30秒前
30秒前
wzx完成签到,获得积分10
31秒前
plumcute完成签到,获得积分10
31秒前
31秒前
不吃糖发布了新的文献求助10
32秒前
burrrrr发布了新的文献求助10
32秒前
34秒前
mmmmmmgm发布了新的文献求助10
34秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Izeltabart tapatansine - AdisInsight 800
Maneuvering of a Damaged Navy Combatant 650
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3774527
求助须知:如何正确求助?哪些是违规求助? 3320282
关于积分的说明 10199345
捐赠科研通 3034932
什么是DOI,文献DOI怎么找? 1665302
邀请新用户注册赠送积分活动 796802
科研通“疑难数据库(出版商)”最低求助积分说明 757570