Disentanglement Translation Network for multimodal sentiment analysis

计算机科学 冗余(工程) 编码器 判别式 人工智能 模式 特征学习 模态(人机交互) 机器学习 社会科学 社会学 操作系统
作者
Ying Zeng,Wenjun Yan,Sijie Mai,Haifeng Hu
出处
期刊:Information Fusion [Elsevier]
卷期号:102: 102031-102031 被引量:6
标识
DOI:10.1016/j.inffus.2023.102031
摘要

Obtaining an effective joint representation has always been the goal for multimodal tasks. However, distributional gap inevitably exists due to the heterogeneous nature of different modalities, which poses burden on the fusion process and the learning of multimodal representation. The imbalance of modality dominance further aggravates this problem, where inferior modalities may contain much redundancy that introduces additional variations. To address the aforementioned issues, we propose a Disentanglement Translation Network (DTN) with Slack Reconstruction to capture desirable information properties, obtain a unified feature distribution and reduce redundancy. Specifically, the encoder–decoder-based disentanglement framework is adopted to decouple the unimodal representations into modality-common and modality-specific subspaces, which explores the cross-modal commonality and diversity, respectively. In the encoding stage, to narrow down the discrepancy, a two-stage translation is devised to incorporate with the disentanglement learning framework. The first stage targets at learning modality-invariant embedding for modality-common information with adversarial learning strategy, capturing the commonality shared across modalities. The second stage considers the modality-specific information that reveals diversity. To relieve the burden of multimodal fusion, we realize Specific-Common Distribution Matching to further unify the distribution of the desirable information. As for the decoding and reconstruction stage, we propose Slack Reconstruction to seek a balance between retaining discriminative information and reducing redundancy. Although the existing commonly-used reconstruction loss with strict constraint lowers the risk of information loss, it easily leads to the preservation of information redundancy. In contrast, Slack Reconstruction imposes a more relaxed constraint so that the redundancy is not forced to be retained, and simultaneously explores the inter-sample relationships. The proposed method aids multimodal fusion by learning the exact properties and obtaining a more uniform distribution for cross-modal data, and manages to reduce information redundancy to further ensure feature effectiveness. Extensive experiments on the task of multimodal sentiment analysis indicate the effectiveness of the proposed method. The codes are available at https://github.com/zengy268/DTN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科目三应助云里采纳,获得10
1秒前
老庄发布了新的文献求助10
1秒前
渡边京介完成签到,获得积分20
2秒前
寂寞的茹妖完成签到,获得积分10
3秒前
5秒前
丘比特应助我想开兰博采纳,获得10
6秒前
8秒前
9秒前
高贵梦秋发布了新的文献求助10
10秒前
10秒前
安安发布了新的文献求助10
11秒前
脑洞疼应助姆姆没买采纳,获得10
11秒前
diyochean关注了科研通微信公众号
13秒前
14秒前
myp完成签到,获得积分10
16秒前
李健应助哈娜桑de悦采纳,获得10
16秒前
方格完成签到 ,获得积分10
16秒前
16秒前
研友_ZlelD8发布了新的文献求助10
17秒前
赘婿应助BZPL采纳,获得10
17秒前
18秒前
见怪不怪发布了新的文献求助10
19秒前
脑洞疼应助Ultraman45采纳,获得10
20秒前
20秒前
22秒前
舒心盼旋完成签到,获得积分10
22秒前
方格发布了新的文献求助30
24秒前
渣渣完成签到,获得积分10
25秒前
小二郎应助阿利呀采纳,获得20
25秒前
斯文败类应助云里采纳,获得10
25秒前
26秒前
学术长颈鹿完成签到,获得积分10
26秒前
wjl发布了新的文献求助10
26秒前
生动惜灵应助英俊延恶采纳,获得10
27秒前
Leeny发布了新的文献求助10
28秒前
Akim应助飞快的尔容采纳,获得10
29秒前
29秒前
30秒前
30秒前
31秒前
高分求助中
中央政治學校研究部新政治月刊社出版之《新政治》(第二卷第四期) 1000
Hopemont Capacity Assessment Interview manual and scoring guide 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Mantids of the euro-mediterranean area 600
【港理工学位论文】Telling the tale of health crisis response on social media : an exploration of narrative plot and commenters' co-narration 500
Mantodea of the World: Species Catalog Andrew M 500
Insecta 2. Blattodea, Mantodea, Isoptera, Grylloblattodea, Phasmatodea, Dermaptera and Embioptera 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 基因 遗传学 化学工程 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3434032
求助须知:如何正确求助?哪些是违规求助? 3031223
关于积分的说明 8941345
捐赠科研通 2719217
什么是DOI,文献DOI怎么找? 1491694
科研通“疑难数据库(出版商)”最低求助积分说明 689392
邀请新用户注册赠送积分活动 685523