Disentanglement Translation Network for multimodal sentiment analysis

计算机科学 冗余(工程) 编码器 判别式 人工智能 模式 特征学习 模态(人机交互) 机器学习 社会科学 社会学 操作系统
作者
Ying Zeng,Wenjun Yan,Sijie Mai,Haifeng Hu
出处
期刊:Information Fusion [Elsevier BV]
卷期号:102: 102031-102031 被引量:18
标识
DOI:10.1016/j.inffus.2023.102031
摘要

Obtaining an effective joint representation has always been the goal for multimodal tasks. However, distributional gap inevitably exists due to the heterogeneous nature of different modalities, which poses burden on the fusion process and the learning of multimodal representation. The imbalance of modality dominance further aggravates this problem, where inferior modalities may contain much redundancy that introduces additional variations. To address the aforementioned issues, we propose a Disentanglement Translation Network (DTN) with Slack Reconstruction to capture desirable information properties, obtain a unified feature distribution and reduce redundancy. Specifically, the encoder–decoder-based disentanglement framework is adopted to decouple the unimodal representations into modality-common and modality-specific subspaces, which explores the cross-modal commonality and diversity, respectively. In the encoding stage, to narrow down the discrepancy, a two-stage translation is devised to incorporate with the disentanglement learning framework. The first stage targets at learning modality-invariant embedding for modality-common information with adversarial learning strategy, capturing the commonality shared across modalities. The second stage considers the modality-specific information that reveals diversity. To relieve the burden of multimodal fusion, we realize Specific-Common Distribution Matching to further unify the distribution of the desirable information. As for the decoding and reconstruction stage, we propose Slack Reconstruction to seek a balance between retaining discriminative information and reducing redundancy. Although the existing commonly-used reconstruction loss with strict constraint lowers the risk of information loss, it easily leads to the preservation of information redundancy. In contrast, Slack Reconstruction imposes a more relaxed constraint so that the redundancy is not forced to be retained, and simultaneously explores the inter-sample relationships. The proposed method aids multimodal fusion by learning the exact properties and obtaining a more uniform distribution for cross-modal data, and manages to reduce information redundancy to further ensure feature effectiveness. Extensive experiments on the task of multimodal sentiment analysis indicate the effectiveness of the proposed method. The codes are available at https://github.com/zengy268/DTN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
追寻夏旋给追寻夏旋的求助进行了留言
刚刚
majiko发布了新的文献求助10
刚刚
Cherry完成签到 ,获得积分10
1秒前
1秒前
2秒前
2秒前
2秒前
desperate完成签到,获得积分10
3秒前
坚强幼晴发布了新的文献求助10
3秒前
SS关注了科研通微信公众号
4秒前
zzzyyyuuu完成签到 ,获得积分10
4秒前
眉清目秀的大猩猩完成签到,获得积分10
4秒前
Sebastian发布了新的文献求助10
5秒前
牧羊人发布了新的文献求助10
5秒前
Lucas应助Kra采纳,获得10
6秒前
6秒前
丘比特应助majiko采纳,获得10
7秒前
muxiangrong完成签到,获得积分0
8秒前
nature预备军完成签到 ,获得积分10
9秒前
Owen应助永远明媚采纳,获得10
13秒前
Yy完成签到 ,获得积分10
13秒前
jinying完成签到,获得积分10
15秒前
麻雀完成签到,获得积分10
15秒前
18秒前
彭于晏应助小珠采纳,获得10
18秒前
昏睡的蟠桃应助王鹏飞采纳,获得30
18秒前
20秒前
龙飞凤舞完成签到,获得积分10
21秒前
量子星尘发布了新的文献求助10
21秒前
在水一方应助牧羊人采纳,获得10
22秒前
23秒前
调皮雨灵完成签到 ,获得积分10
23秒前
SS发布了新的文献求助10
23秒前
superhero发布了新的文献求助10
23秒前
victor1995888完成签到,获得积分10
23秒前
喜悦念柏完成签到,获得积分10
23秒前
24秒前
尘南浔完成签到,获得积分10
25秒前
HHH完成签到,获得积分10
25秒前
Owen应助洺全采纳,获得10
25秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958345
求助须知:如何正确求助?哪些是违规求助? 3504604
关于积分的说明 11118997
捐赠科研通 3235815
什么是DOI,文献DOI怎么找? 1788530
邀请新用户注册赠送积分活动 871225
科研通“疑难数据库(出版商)”最低求助积分说明 802600