清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Disentanglement Translation Network for multimodal sentiment analysis

计算机科学 冗余(工程) 编码器 判别式 人工智能 模式 特征学习 模态(人机交互) 机器学习 社会科学 社会学 操作系统
作者
Ying Zeng,Wenjun Yan,Sijie Mai,Haifeng Hu
出处
期刊:Information Fusion [Elsevier]
卷期号:102: 102031-102031 被引量:42
标识
DOI:10.1016/j.inffus.2023.102031
摘要

Obtaining an effective joint representation has always been the goal for multimodal tasks. However, distributional gap inevitably exists due to the heterogeneous nature of different modalities, which poses burden on the fusion process and the learning of multimodal representation. The imbalance of modality dominance further aggravates this problem, where inferior modalities may contain much redundancy that introduces additional variations. To address the aforementioned issues, we propose a Disentanglement Translation Network (DTN) with Slack Reconstruction to capture desirable information properties, obtain a unified feature distribution and reduce redundancy. Specifically, the encoder–decoder-based disentanglement framework is adopted to decouple the unimodal representations into modality-common and modality-specific subspaces, which explores the cross-modal commonality and diversity, respectively. In the encoding stage, to narrow down the discrepancy, a two-stage translation is devised to incorporate with the disentanglement learning framework. The first stage targets at learning modality-invariant embedding for modality-common information with adversarial learning strategy, capturing the commonality shared across modalities. The second stage considers the modality-specific information that reveals diversity. To relieve the burden of multimodal fusion, we realize Specific-Common Distribution Matching to further unify the distribution of the desirable information. As for the decoding and reconstruction stage, we propose Slack Reconstruction to seek a balance between retaining discriminative information and reducing redundancy. Although the existing commonly-used reconstruction loss with strict constraint lowers the risk of information loss, it easily leads to the preservation of information redundancy. In contrast, Slack Reconstruction imposes a more relaxed constraint so that the redundancy is not forced to be retained, and simultaneously explores the inter-sample relationships. The proposed method aids multimodal fusion by learning the exact properties and obtaining a more uniform distribution for cross-modal data, and manages to reduce information redundancy to further ensure feature effectiveness. Extensive experiments on the task of multimodal sentiment analysis indicate the effectiveness of the proposed method. The codes are available at https://github.com/zengy268/DTN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
小小虾完成签到 ,获得积分10
14秒前
weiwei完成签到,获得积分10
42秒前
爱思考的小笨笨完成签到,获得积分10
43秒前
1分钟前
研友_nxw2xL完成签到,获得积分10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
如歌完成签到,获得积分10
1分钟前
阳光的丹雪完成签到,获得积分10
1分钟前
Criminology34应助Lulu采纳,获得10
1分钟前
1分钟前
多乐多发布了新的文献求助10
1分钟前
情怀应助多乐多采纳,获得10
2分钟前
蝎子莱莱xth完成签到,获得积分10
3分钟前
氢锂钠钾铷铯钫完成签到,获得积分10
3分钟前
woxinyouyou完成签到,获得积分0
3分钟前
crazy完成签到,获得积分10
3分钟前
Square完成签到,获得积分10
3分钟前
3分钟前
科研通AI6应助科研通管家采纳,获得10
3分钟前
h0jian09完成签到,获得积分10
3分钟前
lovelife完成签到,获得积分10
4分钟前
4分钟前
刘刘完成签到 ,获得积分10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
魔幻的从丹完成签到 ,获得积分10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
老石完成签到 ,获得积分10
5分钟前
Jessica应助hu采纳,获得10
5分钟前
6分钟前
6分钟前
雨jia完成签到,获得积分10
6分钟前
大个应助鹏哥爱科研采纳,获得10
6分钟前
6分钟前
6分钟前
George发布了新的文献求助10
7分钟前
自然亦凝完成签到,获得积分10
7分钟前
7分钟前
浑续发布了新的文献求助10
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664535
求助须知:如何正确求助?哪些是违规求助? 4864753
关于积分的说明 15107992
捐赠科研通 4823177
什么是DOI,文献DOI怎么找? 2582040
邀请新用户注册赠送积分活动 1536144
关于科研通互助平台的介绍 1494545