已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Visual prior-based cross-modal alignment network for radiology report generation

计算机科学 人工智能 情态动词 水准点(测量) 工作量 过程(计算) 医学诊断 医学影像学 可视化 模式识别(心理学) 机器学习 计算机视觉 放射科 医学 化学 大地测量学 高分子化学 地理 操作系统
作者
Sheng Zhang,Chuan Zhou,Leiting Chen,Z.M. Li,Yuan Gao,Yongqi Chen
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:166: 107522-107522 被引量:5
标识
DOI:10.1016/j.compbiomed.2023.107522
摘要

Automated radiology report generation is gaining popularity as a means to alleviate the workload of radiologists and prevent misdiagnosis and missed diagnoses. By imitating the working patterns of radiologists, previous report generation approaches have achieved remarkable performance. However, these approaches suffer from two significant problems: (1) lack of visual prior: medical observations in radiology images are interdependent and exhibit certain patterns, and lack of such visual prior can result in reduced accuracy in identifying abnormal regions; (2) lack of alignment between images and texts: the absence of annotations and alignments for regions of interest in the radiology images and reports can lead to inconsistent visual and textual features of the abnormal regions generated by the model. To address these issues, we propose a Visual Prior-based Cross-modal Alignment Network for radiology report generation. First, we propose a novel Contrastive Attention that compares input image with normal images to extract difference information, namely visual prior, which helps to identify abnormalities quickly. Then, to facilitate the alignment of images and texts, we propose a Cross-modal Alignment Network that leverages the cross-modal matrix initialized by the features generated by pre-trained models, to compute cross-modal responses for visual and textual features. Finally, a Visual Prior-guided Multi-Head Attention is proposed to incorporate the visual prior into the generation process. The extensive experimental results on two benchmark datasets, IU-Xray and MIMIC-CXR, illustrate that our proposed model outperforms the state-of-the-art models over almost all metrics, achieving BLEU-4 scores of 0.188 and 0.116 and CIDEr scores of 0.409 and 0.240, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
刚刚
发发发布了新的文献求助10
1秒前
1秒前
wanci应助lty001采纳,获得10
1秒前
相思发布了新的文献求助10
1秒前
张卓荦发布了新的文献求助10
2秒前
英姑应助Myain唛唛采纳,获得10
5秒前
炙热安彤发布了新的文献求助10
6秒前
小胖发布了新的文献求助10
7秒前
adkdad完成签到,获得积分10
7秒前
7秒前
song完成签到,获得积分10
8秒前
无语伦比完成签到 ,获得积分10
8秒前
9秒前
lu完成签到 ,获得积分10
9秒前
10秒前
10秒前
小星完成签到 ,获得积分10
11秒前
Chouvikin完成签到,获得积分10
13秒前
song发布了新的文献求助10
13秒前
malo发布了新的文献求助10
13秒前
lty001完成签到,获得积分10
14秒前
yout发布了新的文献求助10
15秒前
时雨完成签到,获得积分10
16秒前
lty001发布了新的文献求助10
16秒前
5年科研3年毕业完成签到,获得积分10
18秒前
魁梧的衫完成签到 ,获得积分10
19秒前
无花果应助2317659604采纳,获得10
20秒前
强小强完成签到,获得积分10
21秒前
CC完成签到,获得积分10
21秒前
Ayyyy发布了新的文献求助10
23秒前
一杯茶具完成签到 ,获得积分10
23秒前
25秒前
25秒前
欧皇发布了新的文献求助10
26秒前
27秒前
伶俐的金连完成签到 ,获得积分10
27秒前
zzzrrr完成签到 ,获得积分10
28秒前
yu完成签到,获得积分10
29秒前
1點點cui发布了新的文献求助10
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1041
Mentoring for Wellbeing in Schools 1000
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5493477
求助须知:如何正确求助?哪些是违规求助? 4591538
关于积分的说明 14434024
捐赠科研通 4524021
什么是DOI,文献DOI怎么找? 2478548
邀请新用户注册赠送积分活动 1463520
关于科研通互助平台的介绍 1436387