Visual prior-based cross-modal alignment network for radiology report generation

计算机科学 人工智能 情态动词 水准点(测量) 工作量 过程(计算) 医学诊断 医学影像学 可视化 模式识别(心理学) 机器学习 计算机视觉 放射科 医学 化学 大地测量学 高分子化学 地理 操作系统
作者
Sheng Zhang,Chuan Zhou,Leiting Chen,Z.M. Li,Yuan Gao,Yongqi Chen
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:166: 107522-107522 被引量:5
标识
DOI:10.1016/j.compbiomed.2023.107522
摘要

Automated radiology report generation is gaining popularity as a means to alleviate the workload of radiologists and prevent misdiagnosis and missed diagnoses. By imitating the working patterns of radiologists, previous report generation approaches have achieved remarkable performance. However, these approaches suffer from two significant problems: (1) lack of visual prior: medical observations in radiology images are interdependent and exhibit certain patterns, and lack of such visual prior can result in reduced accuracy in identifying abnormal regions; (2) lack of alignment between images and texts: the absence of annotations and alignments for regions of interest in the radiology images and reports can lead to inconsistent visual and textual features of the abnormal regions generated by the model. To address these issues, we propose a Visual Prior-based Cross-modal Alignment Network for radiology report generation. First, we propose a novel Contrastive Attention that compares input image with normal images to extract difference information, namely visual prior, which helps to identify abnormalities quickly. Then, to facilitate the alignment of images and texts, we propose a Cross-modal Alignment Network that leverages the cross-modal matrix initialized by the features generated by pre-trained models, to compute cross-modal responses for visual and textual features. Finally, a Visual Prior-guided Multi-Head Attention is proposed to incorporate the visual prior into the generation process. The extensive experimental results on two benchmark datasets, IU-Xray and MIMIC-CXR, illustrate that our proposed model outperforms the state-of-the-art models over almost all metrics, achieving BLEU-4 scores of 0.188 and 0.116 and CIDEr scores of 0.409 and 0.240, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
可爱丸子完成签到,获得积分10
1秒前
Rinamamiya发布了新的文献求助50
1秒前
头上有犄角bb完成签到 ,获得积分10
3秒前
量子星尘发布了新的文献求助10
3秒前
4秒前
pluto应助fafafa采纳,获得10
4秒前
6秒前
7秒前
7秒前
8秒前
璟晔完成签到,获得积分10
9秒前
11秒前
11秒前
醉熏的伊完成签到,获得积分10
12秒前
南歌子完成签到 ,获得积分10
13秒前
grass发布了新的文献求助10
13秒前
酥瓜完成签到 ,获得积分10
15秒前
asdfzxcv应助科研通管家采纳,获得10
17秒前
科研通AI2S应助科研通管家采纳,获得10
17秒前
香蕉觅云应助科研通管家采纳,获得10
17秒前
Ava应助科研通管家采纳,获得10
17秒前
asdfzxcv应助科研通管家采纳,获得10
17秒前
17秒前
asdfzxcv应助科研通管家采纳,获得10
17秒前
asdfzxcv应助科研通管家采纳,获得10
17秒前
asdfzxcv应助科研通管家采纳,获得10
18秒前
asdfzxcv应助科研通管家采纳,获得10
18秒前
科研通AI2S应助科研通管家采纳,获得10
18秒前
香蕉觅云应助科研通管家采纳,获得10
18秒前
18秒前
Ava应助科研通管家采纳,获得10
18秒前
chen应助科研通管家采纳,获得10
18秒前
18秒前
asdfzxcv应助科研通管家采纳,获得10
18秒前
asdfzxcv应助科研通管家采纳,获得10
18秒前
18秒前
asdfzxcv应助科研通管家采纳,获得10
18秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5741989
求助须知:如何正确求助?哪些是违规求助? 5404909
关于积分的说明 15343645
捐赠科研通 4883431
什么是DOI,文献DOI怎么找? 2625021
邀请新用户注册赠送积分活动 1573893
关于科研通互助平台的介绍 1530838