Visual prior-based cross-modal alignment network for radiology report generation

计算机科学 人工智能 情态动词 水准点(测量) 工作量 过程(计算) 医学诊断 医学影像学 可视化 模式识别(心理学) 机器学习 计算机视觉 放射科 医学 操作系统 化学 高分子化学 地理 大地测量学
作者
Sheng Zhang,Chuan Zhou,Leiting Chen,Z.M. Li,Yuan Gao,Yongqi Chen
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:166: 107522-107522 被引量:5
标识
DOI:10.1016/j.compbiomed.2023.107522
摘要

Automated radiology report generation is gaining popularity as a means to alleviate the workload of radiologists and prevent misdiagnosis and missed diagnoses. By imitating the working patterns of radiologists, previous report generation approaches have achieved remarkable performance. However, these approaches suffer from two significant problems: (1) lack of visual prior: medical observations in radiology images are interdependent and exhibit certain patterns, and lack of such visual prior can result in reduced accuracy in identifying abnormal regions; (2) lack of alignment between images and texts: the absence of annotations and alignments for regions of interest in the radiology images and reports can lead to inconsistent visual and textual features of the abnormal regions generated by the model. To address these issues, we propose a Visual Prior-based Cross-modal Alignment Network for radiology report generation. First, we propose a novel Contrastive Attention that compares input image with normal images to extract difference information, namely visual prior, which helps to identify abnormalities quickly. Then, to facilitate the alignment of images and texts, we propose a Cross-modal Alignment Network that leverages the cross-modal matrix initialized by the features generated by pre-trained models, to compute cross-modal responses for visual and textual features. Finally, a Visual Prior-guided Multi-Head Attention is proposed to incorporate the visual prior into the generation process. The extensive experimental results on two benchmark datasets, IU-Xray and MIMIC-CXR, illustrate that our proposed model outperforms the state-of-the-art models over almost all metrics, achieving BLEU-4 scores of 0.188 and 0.116 and CIDEr scores of 0.409 and 0.240, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
冬烜完成签到 ,获得积分10
刚刚
Zard发布了新的文献求助10
1秒前
liu123456完成签到,获得积分10
1秒前
屎味烤地瓜完成签到,获得积分10
1秒前
852应助荒野风采纳,获得10
2秒前
5秒前
芳泽发布了新的文献求助10
5秒前
su发布了新的文献求助10
6秒前
Milou完成签到,获得积分10
7秒前
7秒前
老阎应助科研通管家采纳,获得30
7秒前
orixero应助科研通管家采纳,获得10
8秒前
汉堡包应助科研通管家采纳,获得10
8秒前
8秒前
小马甲应助科研通管家采纳,获得10
8秒前
科研白菜白完成签到,获得积分10
8秒前
慕青应助科研通管家采纳,获得10
8秒前
大模型应助科研通管家采纳,获得10
8秒前
无花果应助科研通管家采纳,获得10
8秒前
英俊的铭应助科研通管家采纳,获得20
8秒前
8秒前
SciGPT应助科研通管家采纳,获得10
8秒前
科研乞丐应助科研通管家采纳,获得20
8秒前
jjj应助科研通管家采纳,获得20
8秒前
小二郎应助科研通管家采纳,获得10
8秒前
小马甲应助科研通管家采纳,获得30
8秒前
桐桐应助科研通管家采纳,获得10
8秒前
ding应助科研通管家采纳,获得10
8秒前
8秒前
烟花应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
8秒前
充电宝应助科研通管家采纳,获得10
8秒前
zpt完成签到,获得积分10
9秒前
爱学习的瑞瑞子完成签到 ,获得积分10
9秒前
pauchiu完成签到,获得积分0
9秒前
jay完成签到,获得积分10
9秒前
10秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038619
求助须知:如何正确求助?哪些是违规求助? 3576294
关于积分的说明 11375058
捐赠科研通 3306084
什么是DOI,文献DOI怎么找? 1819374
邀请新用户注册赠送积分活动 892698
科研通“疑难数据库(出版商)”最低求助积分说明 815066