Deep Learning for Cardiovascular Imaging

人工智能 深度学习 模式 卷积神经网络 医学 机器学习 过度拟合 领域(数学) 相关性(法律) 计算机科学 人工神经网络 数据科学 社会科学 数学 社会学 政治学 纯数学 法学
作者
Ramsey M. Wehbe,Aggelos K. Katsaggelos,Kristian J. Hammond,Ha Hong,Faraz S. Ahmad,David Ouyang,Sanjiv J. Shah,Patrick M. McCarthy,James D. Thomas
出处
期刊:JAMA Cardiology [American Medical Association]
卷期号:8 (11): 1089-1089 被引量:39
标识
DOI:10.1001/jamacardio.2023.3142
摘要

Importance Artificial intelligence (AI), driven by advances in deep learning (DL), has the potential to reshape the field of cardiovascular imaging (CVI). While DL for CVI is still in its infancy, research is accelerating to aid in the acquisition, processing, and/or interpretation of CVI across various modalities, with several commercial products already in clinical use. It is imperative that cardiovascular imagers are familiar with DL systems, including a basic understanding of how they work, their relative strengths compared with other automated systems, and possible pitfalls in their implementation. The goal of this article is to review the methodology and application of DL to CVI in a simple, digestible fashion toward demystifying this emerging technology. Observations At its core, DL is simply the application of a series of tunable mathematical operations that translate input data into a desired output. Based on artificial neural networks that are inspired by the human nervous system, there are several types of DL architectures suited to different tasks; convolutional neural networks are particularly adept at extracting valuable information from CVI data. We survey some of the notable applications of DL to tasks across the spectrum of CVI modalities. We also discuss challenges in the development and implementation of DL systems, including avoiding overfitting, preventing systematic bias, improving explainability, and fostering a human-machine partnership. Finally, we conclude with a vision of the future of DL for CVI. Conclusions and Relevance Deep learning has the potential to meaningfully affect the field of CVI. Rather than a threat, DL could be seen as a partner to cardiovascular imagers in reducing technical burden and improving efficiency and quality of care. High-quality prospective evidence is still needed to demonstrate how the benefits of DL CVI systems may outweigh the risks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
顾矜应助loyuanhao采纳,获得10
2秒前
老麦完成签到 ,获得积分20
2秒前
2秒前
香蕉诗蕊应助李鱼采纳,获得10
3秒前
3秒前
传统的怀薇完成签到 ,获得积分10
4秒前
研友_ngX12Z发布了新的文献求助10
6秒前
6秒前
BowieHuang应助科研通管家采纳,获得10
6秒前
萝卜青菜应助科研通管家采纳,获得20
6秒前
勤恳雅莉应助科研通管家采纳,获得10
7秒前
英俊的铭应助科研通管家采纳,获得10
7秒前
CipherSage应助科研通管家采纳,获得10
7秒前
Jasper应助科研通管家采纳,获得10
7秒前
Ava应助科研通管家采纳,获得10
7秒前
小马甲应助科研通管家采纳,获得10
7秒前
科研通AI6应助科研通管家采纳,获得10
7秒前
科目三应助科研通管家采纳,获得10
7秒前
在水一方应助科研通管家采纳,获得10
7秒前
7秒前
shi hui应助科研通管家采纳,获得10
7秒前
cc应助科研通管家采纳,获得20
7秒前
华仔应助科研通管家采纳,获得10
7秒前
隐形曼青应助科研通管家采纳,获得10
7秒前
田様应助科研通管家采纳,获得30
7秒前
7秒前
shi hui应助科研通管家采纳,获得10
7秒前
7秒前
JamesPei应助科研通管家采纳,获得10
7秒前
8秒前
9秒前
徐yy完成签到 ,获得积分10
11秒前
bfsd凡发布了新的文献求助10
14秒前
鲤鱼诗桃发布了新的文献求助10
16秒前
科研通AI6应助灯箱采纳,获得10
17秒前
17秒前
Jasper应助霸气的保温杯采纳,获得10
18秒前
20秒前
收费完成签到 ,获得积分10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5560766
求助须知:如何正确求助?哪些是违规求助? 4646107
关于积分的说明 14677378
捐赠科研通 4587231
什么是DOI,文献DOI怎么找? 2516891
邀请新用户注册赠送积分活动 1490320
关于科研通互助平台的介绍 1461160