Deep Learning for Cardiovascular Imaging

人工智能 深度学习 模式 卷积神经网络 医学 机器学习 过度拟合 领域(数学) 相关性(法律) 计算机科学 人工神经网络 数据科学 数学 社会科学 社会学 政治学 法学 纯数学
作者
Ramsey M. Wehbe,Aggelos K. Katsaggelos,Kristian J. Hammond,Ha Hong,Faraz S. Ahmad,David Ouyang,Sanjiv J. Shah,Patrick M. McCarthy,James D. Thomas
出处
期刊:JAMA Cardiology [American Medical Association]
卷期号:8 (11): 1089-1089 被引量:17
标识
DOI:10.1001/jamacardio.2023.3142
摘要

Importance Artificial intelligence (AI), driven by advances in deep learning (DL), has the potential to reshape the field of cardiovascular imaging (CVI). While DL for CVI is still in its infancy, research is accelerating to aid in the acquisition, processing, and/or interpretation of CVI across various modalities, with several commercial products already in clinical use. It is imperative that cardiovascular imagers are familiar with DL systems, including a basic understanding of how they work, their relative strengths compared with other automated systems, and possible pitfalls in their implementation. The goal of this article is to review the methodology and application of DL to CVI in a simple, digestible fashion toward demystifying this emerging technology. Observations At its core, DL is simply the application of a series of tunable mathematical operations that translate input data into a desired output. Based on artificial neural networks that are inspired by the human nervous system, there are several types of DL architectures suited to different tasks; convolutional neural networks are particularly adept at extracting valuable information from CVI data. We survey some of the notable applications of DL to tasks across the spectrum of CVI modalities. We also discuss challenges in the development and implementation of DL systems, including avoiding overfitting, preventing systematic bias, improving explainability, and fostering a human-machine partnership. Finally, we conclude with a vision of the future of DL for CVI. Conclusions and Relevance Deep learning has the potential to meaningfully affect the field of CVI. Rather than a threat, DL could be seen as a partner to cardiovascular imagers in reducing technical burden and improving efficiency and quality of care. High-quality prospective evidence is still needed to demonstrate how the benefits of DL CVI systems may outweigh the risks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大力婷完成签到,获得积分10
刚刚
耍酷依玉完成签到,获得积分20
刚刚
我先去吃饭了关注了科研通微信公众号
刚刚
1秒前
华仔应助真实的映容采纳,获得10
1秒前
2秒前
诚心凝蝶完成签到,获得积分10
2秒前
善学以致用应助归海凡儿采纳,获得10
3秒前
传奇3应助狗德拜采纳,获得10
3秒前
ZHOUCHENG发布了新的文献求助10
3秒前
5秒前
和谐一一完成签到,获得积分10
5秒前
耍酷依玉发布了新的文献求助10
6秒前
6秒前
8秒前
quan完成签到,获得积分10
9秒前
Cissy发布了新的文献求助10
9秒前
9秒前
顺利毕业发布了新的文献求助10
11秒前
和谐一一发布了新的文献求助10
12秒前
13秒前
眼睛大的胡萝卜完成签到 ,获得积分10
13秒前
ding应助耍酷依玉采纳,获得10
16秒前
16秒前
繁荣的代秋完成签到 ,获得积分10
16秒前
16秒前
17秒前
阿禹发布了新的文献求助10
17秒前
共享精神应助科研通管家采纳,获得10
18秒前
桐桐应助科研通管家采纳,获得10
18秒前
元谷雪应助科研通管家采纳,获得10
18秒前
无花果应助科研通管家采纳,获得10
18秒前
18秒前
FashionBoy应助科研通管家采纳,获得10
18秒前
18秒前
18秒前
19秒前
科研通AI2S应助眼睛大花生采纳,获得10
19秒前
Cissy完成签到,获得积分20
20秒前
小杜发布了新的文献求助10
20秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3143769
求助须知:如何正确求助?哪些是违规求助? 2795257
关于积分的说明 7813954
捐赠科研通 2451248
什么是DOI,文献DOI怎么找? 1304400
科研通“疑难数据库(出版商)”最低求助积分说明 627221
版权声明 601413