已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Deep Learning for Cardiovascular Imaging

人工智能 深度学习 模式 卷积神经网络 医学 机器学习 过度拟合 领域(数学) 相关性(法律) 计算机科学 人工神经网络 数据科学 社会科学 数学 社会学 政治学 纯数学 法学
作者
Ramsey M. Wehbe,Aggelos K. Katsaggelos,Kristian J. Hammond,Ha Hong,Faraz S. Ahmad,David Ouyang,Sanjiv J. Shah,Patrick M. McCarthy,James D. Thomas
出处
期刊:JAMA Cardiology [American Medical Association]
卷期号:8 (11): 1089-1089 被引量:24
标识
DOI:10.1001/jamacardio.2023.3142
摘要

Artificial intelligence (AI), driven by advances in deep learning (DL), has the potential to reshape the field of cardiovascular imaging (CVI). While DL for CVI is still in its infancy, research is accelerating to aid in the acquisition, processing, and/or interpretation of CVI across various modalities, with several commercial products already in clinical use. It is imperative that cardiovascular imagers are familiar with DL systems, including a basic understanding of how they work, their relative strengths compared with other automated systems, and possible pitfalls in their implementation. The goal of this article is to review the methodology and application of DL to CVI in a simple, digestible fashion toward demystifying this emerging technology.At its core, DL is simply the application of a series of tunable mathematical operations that translate input data into a desired output. Based on artificial neural networks that are inspired by the human nervous system, there are several types of DL architectures suited to different tasks; convolutional neural networks are particularly adept at extracting valuable information from CVI data. We survey some of the notable applications of DL to tasks across the spectrum of CVI modalities. We also discuss challenges in the development and implementation of DL systems, including avoiding overfitting, preventing systematic bias, improving explainability, and fostering a human-machine partnership. Finally, we conclude with a vision of the future of DL for CVI.Deep learning has the potential to meaningfully affect the field of CVI. Rather than a threat, DL could be seen as a partner to cardiovascular imagers in reducing technical burden and improving efficiency and quality of care. High-quality prospective evidence is still needed to demonstrate how the benefits of DL CVI systems may outweigh the risks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3113129605完成签到 ,获得积分10
1秒前
Dan完成签到 ,获得积分10
3秒前
tjnksy完成签到,获得积分10
7秒前
xxx完成签到 ,获得积分10
8秒前
Tender完成签到,获得积分10
9秒前
蒋灵馨完成签到 ,获得积分10
11秒前
小yy完成签到 ,获得积分10
13秒前
迷人的天抒应助mmyhn采纳,获得20
18秒前
kyfbrahha完成签到 ,获得积分10
22秒前
张aa完成签到 ,获得积分10
27秒前
jokerhoney完成签到,获得积分10
28秒前
32秒前
晓书完成签到 ,获得积分10
37秒前
41秒前
Bin_Liu完成签到,获得积分20
44秒前
DD立芬完成签到 ,获得积分10
46秒前
48秒前
王佳怡完成签到 ,获得积分10
49秒前
exosome完成签到,获得积分10
53秒前
热情的寄瑶完成签到 ,获得积分10
54秒前
开心牛油果完成签到,获得积分10
59秒前
尾状叶完成签到 ,获得积分10
1分钟前
桐桐应助study666采纳,获得10
1分钟前
C9完成签到 ,获得积分10
1分钟前
小蘑菇应助sk4ajd采纳,获得10
1分钟前
1分钟前
旺仔先生完成签到 ,获得积分10
1分钟前
1分钟前
L_MD完成签到,获得积分10
1分钟前
赘婿应助开心牛油果采纳,获得10
1分钟前
青糯完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
automan完成签到,获得积分10
1分钟前
1分钟前
sk4ajd发布了新的文献求助10
1分钟前
wenhao完成签到 ,获得积分10
1分钟前
猪猪侠发布了新的文献求助10
1分钟前
study666发布了新的文献求助10
1分钟前
xiaoshuwang完成签到,获得积分10
1分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3968199
求助须知:如何正确求助?哪些是违规求助? 3513215
关于积分的说明 11166782
捐赠科研通 3248448
什么是DOI,文献DOI怎么找? 1794246
邀请新用户注册赠送积分活动 874950
科研通“疑难数据库(出版商)”最低求助积分说明 804629