发光
材料科学
结晶
二次谐波产生
卤化物
锰
结晶学
光致发光
圆二色性
分析化学(期刊)
化学
无机化学
光学
物理
光电子学
有机化学
激光器
冶金
作者
Zhexin Song,Xiaojie Liu,Can Yang,Qi Wu,Xiaoyu Guo,Guokui Liu,Yaoyao Wei,Lingqiang Meng,Yangyang Dang
标识
DOI:10.1002/adom.202301272
摘要
Abstract Chiral hybrid Mn (II)‐based halides have attracted great interest in the optoelectronic field due to their low cost, non‐toxicity, abundant structural diversity, and excellent photoluminescence, chiroptical, and nonlinear optical characteristics. Here, chiral hybrids (R/S‐MBA)MnCl 3 ·CH 3 OH (MBA = C 6 H 5 CH(CH 3 )NH 3 + ) and (R/S‐NPA)Cl·H 2 O and (R, S‐NPA)Cl (NPA = C 10 H 7 CH(CH 3 )NH 3 + ) single crystals are successfully obtained using methanol (CH 3 OH) as an induced‐crystallization reagent by slow evaporation method. Interestingly, (R/S‐MBA)MnCl 3 ·CH 3 OH single crystals with obvious circular dichroism (CD) characteristics exhibit the strong red emission characteristics originating from the d‐d transition of Mn 2+ cation, while (R/S‐NPA) Cl·H 2 O and (R, S‐NPA)Cl exhibit blue emission originating from the organic NPA group. Based on their chiral space group P 2 1 (no.4), (R/S‐MBA)MnCl 3 ·CH 3 OH single crystals show excellent circularly polarized luminescence (CPL) with a relatively high luminescence dissymmetry factor ( g lum ) value, which is equivalent to that of reported Mn (II)‐based metal halides. Also, (R/S‐NPA)Cl·H 2 O and (R/S‐MBA)MnCl 3 ·CH 3 OH exhibit the obvious second harmonic generation (SHG) response. This work not only deepens the understanding of the role of methanol‐induced crystallization in improving the quality and growth habits of Mn (II)‐based halide hybrid single crystals, but also provides guidance for further structural design, crystal growth, and optoelectronic applications of multi‐functional chiral hybrid Mn (II)‐based halide materials.
科研通智能强力驱动
Strongly Powered by AbleSci AI