In-phase matrix profile: A novel method for the detection of major depressive disorder

重性抑郁障碍 脑电图 欧几里德距离 模式识别(心理学) 人工智能 计算机科学 医学 心理学 听力学 精神科 认知
作者
Tuuli Uudeberg,Juri Belikov,Laura Päeske,Hiie Hinrikus,Innar Liiv,Maie Bachmann
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:88: 105378-105378 被引量:2
标识
DOI:10.1016/j.bspc.2023.105378
摘要

Major depressive disorder (MDD) is the leading cause of disability worldwide. Reliable detection of MDD is the basis for early and successful intervention in treating the disorder and preventing disability. We introduce a novel feature extraction method, the in-phase matrix profile (pMP), which is specifically adapted for electroencephalographic (EEG) signals. Methods: The pMP characterizes general self-similarity of an EEG signal. The method extracts overlapping one-second-long subsegments from an EEG signal segment, calculates Euclidean distances between all possible subsegment pairs, and subsequently uses the distance values, where subsegments are most in phase, to calculate pMP. The method was applied to the resting-state eyes-closed EEG data of an MDD group and age- and gender-matched healthy controls (66 subjects). Higuchi's fractal dimension (HFD) values were calculated for the same groups for comparison. Results: Both pMP and HFD values were higher in MDD. The pMP successfully distinguished MDD and control group in all 30 EEG channels. In contrast, HFD resulted in statistically significant group distinguishability in 13 (43%) channels located mainly in the central region of the head. The highest classification accuracy for pMP was 73% and for HFD 67%. Conclusion: The present article shows that pMP outperforms HFD in detecting MDD and is a promising method for future MDD studies. Significance: The pMP is a sensitive parameter-free method for detecting MDD that can be used in future studies and is a potential method to reach clinical use for diagnosing MDD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
HU发布了新的文献求助10
刚刚
欢呼雍发布了新的文献求助10
1秒前
1秒前
橘子发布了新的文献求助10
1秒前
setmefree发布了新的文献求助10
2秒前
3秒前
好人一生平安完成签到,获得积分10
4秒前
激昂的白凡应助渡劫采纳,获得20
5秒前
纳斯达克发布了新的文献求助10
6秒前
诗筠完成签到 ,获得积分10
6秒前
Hello应助丽丽呀采纳,获得10
7秒前
sniper111完成签到,获得积分0
7秒前
8秒前
8秒前
9秒前
充电宝应助呆呆棵采纳,获得10
9秒前
George完成签到 ,获得积分10
9秒前
HU完成签到,获得积分10
10秒前
leslie发布了新的文献求助10
11秒前
披星戴月完成签到,获得积分10
12秒前
12秒前
12秒前
过时的沧海关注了科研通微信公众号
13秒前
勤劳代亦发布了新的文献求助10
13秒前
13秒前
小黄发布了新的文献求助10
13秒前
13秒前
1464565388完成签到,获得积分10
15秒前
葛葛完成签到 ,获得积分10
15秒前
淡然红牛应助杨哈哈采纳,获得20
15秒前
wyjistest完成签到,获得积分10
15秒前
16秒前
十公里发布了新的文献求助10
16秒前
飞凡完成签到,获得积分10
16秒前
T77发布了新的文献求助10
16秒前
17秒前
17秒前
starofjlu应助洛洛采纳,获得20
17秒前
18秒前
ddz发布了新的文献求助10
18秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3149112
求助须知:如何正确求助?哪些是违规求助? 2800154
关于积分的说明 7838819
捐赠科研通 2457690
什么是DOI,文献DOI怎么找? 1307972
科研通“疑难数据库(出版商)”最低求助积分说明 628363
版权声明 601706