In-phase matrix profile: A novel method for the detection of major depressive disorder

重性抑郁障碍 脑电图 欧几里德距离 模式识别(心理学) 人工智能 计算机科学 医学 心理学 听力学 精神科 认知
作者
Tuuli Uudeberg,Juri Belikov,Laura Päeske,Hiie Hinrikus,Innar Liiv,Maie Bachmann
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:88: 105378-105378 被引量:2
标识
DOI:10.1016/j.bspc.2023.105378
摘要

Major depressive disorder (MDD) is the leading cause of disability worldwide. Reliable detection of MDD is the basis for early and successful intervention in treating the disorder and preventing disability. We introduce a novel feature extraction method, the in-phase matrix profile (pMP), which is specifically adapted for electroencephalographic (EEG) signals. Methods: The pMP characterizes general self-similarity of an EEG signal. The method extracts overlapping one-second-long subsegments from an EEG signal segment, calculates Euclidean distances between all possible subsegment pairs, and subsequently uses the distance values, where subsegments are most in phase, to calculate pMP. The method was applied to the resting-state eyes-closed EEG data of an MDD group and age- and gender-matched healthy controls (66 subjects). Higuchi's fractal dimension (HFD) values were calculated for the same groups for comparison. Results: Both pMP and HFD values were higher in MDD. The pMP successfully distinguished MDD and control group in all 30 EEG channels. In contrast, HFD resulted in statistically significant group distinguishability in 13 (43%) channels located mainly in the central region of the head. The highest classification accuracy for pMP was 73% and for HFD 67%. Conclusion: The present article shows that pMP outperforms HFD in detecting MDD and is a promising method for future MDD studies. Significance: The pMP is a sensitive parameter-free method for detecting MDD that can be used in future studies and is a potential method to reach clinical use for diagnosing MDD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
852应助zhui采纳,获得10
刚刚
芒果发布了新的文献求助10
刚刚
1秒前
前百年253完成签到,获得积分10
1秒前
1秒前
2秒前
2秒前
2秒前
3秒前
xiaoguai完成签到 ,获得积分10
3秒前
甜蜜晓绿发布了新的文献求助10
5秒前
5秒前
Bruce发布了新的文献求助10
5秒前
6秒前
6秒前
MYhang完成签到,获得积分10
6秒前
wxd发布了新的文献求助10
8秒前
8秒前
哈哈发布了新的文献求助10
9秒前
9秒前
西哈哈发布了新的文献求助10
9秒前
科研通AI5应助lili采纳,获得10
9秒前
郑嘻嘻完成签到,获得积分10
9秒前
9秒前
FEI完成签到,获得积分20
9秒前
11秒前
英姑应助顺利的乐枫采纳,获得10
11秒前
11秒前
11秒前
12秒前
木子加y完成签到 ,获得积分10
13秒前
小蘑菇应助Sally采纳,获得10
13秒前
命运的X号完成签到,获得积分10
13秒前
yangyong发布了新的文献求助10
14秒前
14秒前
图图烤肉完成签到,获得积分10
15秒前
ajiaxi完成签到,获得积分10
15秒前
Bruce完成签到,获得积分10
16秒前
英俊的水彤完成签到 ,获得积分10
16秒前
刘金金完成签到,获得积分10
17秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794