In-phase matrix profile: A novel method for the detection of major depressive disorder

重性抑郁障碍 脑电图 欧几里德距离 模式识别(心理学) 人工智能 计算机科学 医学 心理学 听力学 精神科 认知
作者
Tuuli Uudeberg,Juri Belikov,Laura Päeske,Hiie Hinrikus,Innar Liiv,Maie Bachmann
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:88: 105378-105378 被引量:2
标识
DOI:10.1016/j.bspc.2023.105378
摘要

Major depressive disorder (MDD) is the leading cause of disability worldwide. Reliable detection of MDD is the basis for early and successful intervention in treating the disorder and preventing disability. We introduce a novel feature extraction method, the in-phase matrix profile (pMP), which is specifically adapted for electroencephalographic (EEG) signals. Methods: The pMP characterizes general self-similarity of an EEG signal. The method extracts overlapping one-second-long subsegments from an EEG signal segment, calculates Euclidean distances between all possible subsegment pairs, and subsequently uses the distance values, where subsegments are most in phase, to calculate pMP. The method was applied to the resting-state eyes-closed EEG data of an MDD group and age- and gender-matched healthy controls (66 subjects). Higuchi's fractal dimension (HFD) values were calculated for the same groups for comparison. Results: Both pMP and HFD values were higher in MDD. The pMP successfully distinguished MDD and control group in all 30 EEG channels. In contrast, HFD resulted in statistically significant group distinguishability in 13 (43%) channels located mainly in the central region of the head. The highest classification accuracy for pMP was 73% and for HFD 67%. Conclusion: The present article shows that pMP outperforms HFD in detecting MDD and is a promising method for future MDD studies. Significance: The pMP is a sensitive parameter-free method for detecting MDD that can be used in future studies and is a potential method to reach clinical use for diagnosing MDD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
踏实的老四完成签到,获得积分20
1秒前
1秒前
量子星尘发布了新的文献求助10
3秒前
3秒前
3秒前
33关闭了33文献求助
3秒前
ZZD完成签到 ,获得积分10
3秒前
LW发布了新的文献求助20
3秒前
鲜于飞薇发布了新的文献求助10
3秒前
3秒前
4秒前
SciGPT应助HANK2024采纳,获得10
4秒前
5秒前
研究生发布了新的文献求助10
5秒前
6秒前
6秒前
研友_VZG7GZ应助荷兰香猪采纳,获得10
6秒前
研友_VZG7GZ应助gaterina采纳,获得10
7秒前
万能图书馆应助Dominic采纳,获得10
7秒前
7秒前
ygtrece完成签到,获得积分10
7秒前
SciGPT应助哦耶zyy采纳,获得10
7秒前
ding应助汤飞柏采纳,获得10
7秒前
wade发布了新的文献求助10
8秒前
三新荞发布了新的文献求助10
8秒前
8秒前
专注的白柏完成签到,获得积分10
8秒前
standing发布了新的文献求助10
9秒前
9秒前
10秒前
10秒前
10秒前
徐峰桥发布了新的文献求助10
10秒前
寒冷手链发布了新的文献求助10
10秒前
10秒前
Lucas应助久久久悦采纳,获得10
10秒前
hi发布了新的文献求助10
11秒前
11秒前
12秒前
13秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3971125
求助须知:如何正确求助?哪些是违规求助? 3515824
关于积分的说明 11179811
捐赠科研通 3250971
什么是DOI,文献DOI怎么找? 1795610
邀请新用户注册赠送积分活动 875897
科研通“疑难数据库(出版商)”最低求助积分说明 805207