In-phase matrix profile: A novel method for the detection of major depressive disorder

重性抑郁障碍 脑电图 欧几里德距离 模式识别(心理学) 人工智能 计算机科学 医学 心理学 听力学 精神科 认知
作者
Tuuli Uudeberg,Juri Belikov,Laura Päeske,Hiie Hinrikus,Innar Liiv,Maie Bachmann
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:88: 105378-105378 被引量:2
标识
DOI:10.1016/j.bspc.2023.105378
摘要

Major depressive disorder (MDD) is the leading cause of disability worldwide. Reliable detection of MDD is the basis for early and successful intervention in treating the disorder and preventing disability. We introduce a novel feature extraction method, the in-phase matrix profile (pMP), which is specifically adapted for electroencephalographic (EEG) signals. Methods: The pMP characterizes general self-similarity of an EEG signal. The method extracts overlapping one-second-long subsegments from an EEG signal segment, calculates Euclidean distances between all possible subsegment pairs, and subsequently uses the distance values, where subsegments are most in phase, to calculate pMP. The method was applied to the resting-state eyes-closed EEG data of an MDD group and age- and gender-matched healthy controls (66 subjects). Higuchi's fractal dimension (HFD) values were calculated for the same groups for comparison. Results: Both pMP and HFD values were higher in MDD. The pMP successfully distinguished MDD and control group in all 30 EEG channels. In contrast, HFD resulted in statistically significant group distinguishability in 13 (43%) channels located mainly in the central region of the head. The highest classification accuracy for pMP was 73% and for HFD 67%. Conclusion: The present article shows that pMP outperforms HFD in detecting MDD and is a promising method for future MDD studies. Significance: The pMP is a sensitive parameter-free method for detecting MDD that can be used in future studies and is a potential method to reach clinical use for diagnosing MDD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xiangrikui完成签到,获得积分0
刚刚
江岸与城完成签到 ,获得积分10
1秒前
2秒前
CodeCraft应助董啊采纳,获得10
2秒前
魔力巴啦啦完成签到 ,获得积分10
3秒前
自信雅琴发布了新的文献求助20
3秒前
3秒前
许鑫蓁完成签到 ,获得积分10
3秒前
lulu加油完成签到,获得积分10
4秒前
4秒前
xiangrikui发布了新的文献求助10
4秒前
牛马完成签到 ,获得积分10
5秒前
科研通AI5应助WJH采纳,获得10
6秒前
Zard发布了新的文献求助10
6秒前
王冉冉完成签到,获得积分10
7秒前
ryan1300完成签到 ,获得积分10
7秒前
易拉罐完成签到,获得积分10
7秒前
ZQ完成签到,获得积分10
7秒前
yyds完成签到,获得积分20
7秒前
7秒前
8秒前
彭于晏应助刘宇采纳,获得10
8秒前
9秒前
leeom发布了新的文献求助10
11秒前
Timo干物类完成签到,获得积分10
11秒前
北冥有鱼给北冥有鱼的求助进行了留言
11秒前
11秒前
王冉冉发布了新的文献求助30
11秒前
Ava应助易拉罐采纳,获得10
12秒前
隐形曼青应助无心的土豆采纳,获得10
12秒前
乐于助人大好人完成签到 ,获得积分10
12秒前
ZZQ完成签到,获得积分10
16秒前
量子星尘发布了新的文献求助10
16秒前
Lina HE完成签到 ,获得积分10
16秒前
852应助科研通管家采纳,获得10
16秒前
Ava应助科研通管家采纳,获得10
17秒前
ED应助科研通管家采纳,获得10
17秒前
领导范儿应助科研通管家采纳,获得10
17秒前
17秒前
Akim应助科研通管家采纳,获得10
17秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038569
求助须知:如何正确求助?哪些是违规求助? 3576279
关于积分的说明 11374944
捐赠科研通 3305979
什么是DOI,文献DOI怎么找? 1819354
邀请新用户注册赠送积分活动 892698
科研通“疑难数据库(出版商)”最低求助积分说明 815048