Congestion Control with Receiver-Aided Network Status Awareness in RDMA Transmission

远程直接内存访问 计算机科学 网络拥塞 计算机网络 流量控制(数据) 英菲尼班德 网络流量控制 吞吐量 网络数据包 实时计算 分布式计算 电信 无线
作者
Tianshi Wang,Yiran Zhang,Ao Zhou,Ruidong Li,Kun Zhao,Shangguang Wang
出处
期刊:Communications in computer and information science 卷期号:: 223-236
标识
DOI:10.1007/978-981-99-8104-5_17
摘要

Blockchain technology relies on distributed networks, and Remote Direct Memory Access (RDMA) technology, characterized by ultra-low latency, high bandwidth, has the potential to significantly improve the transmission performance of such networks. RDMA requires a underlying lossless network (usually guaranteed by link-layer flow control called PFC) to fully exploit its performance, wherein congestion control emerges as a key technology in RDMA. However, we find that existing congestion control schemes have limitations in rapidly allocating network bandwidth to eliminate congestion, thus even aggravating side effects of PFC (e.g., head-of-line blocking, unfairness, and deadlock). In this paper, we propose an RDMA congestion control scheme based on receiver-aided network state awareness (RRCC). This research introduces the following key innovations: 1) calculating congestion information through the ECN signals in data packets to achieve a more precise network state sensing method; 2) monitoring the throughput in the receiver side in real-time, and in combination with network state information, periodically adjusting the sender’s rate to achieve rapid rate convergence, accurately preventing and controlling congestion, and addressing issues such as increased flow completion time and slow network congestion recovery. We evaluate RRCC using realistic traffic traces under a three-layer Clos network architecture. The results show that RRCC significantly outperforms existing congestion control schemes in terms of throughput and flow completion time while reducing the side effects of PFC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
FashionBoy应助booooo采纳,获得10
1秒前
1秒前
3秒前
3秒前
z123完成签到,获得积分10
3秒前
LilG发布了新的文献求助10
4秒前
5秒前
搜集达人应助yixiaolou采纳,获得10
5秒前
5秒前
英俊的铭应助快薅秃头了采纳,获得10
5秒前
6秒前
CodeCraft应助九月采纳,获得10
7秒前
搞怪代桃发布了新的文献求助10
7秒前
几酝完成签到 ,获得积分10
8秒前
希望天下0贩的0应助小洋采纳,获得10
8秒前
小十一发布了新的文献求助10
9秒前
9秒前
畅快访蕊发布了新的文献求助10
10秒前
10秒前
10秒前
11秒前
哈哈哈哈哈哈完成签到,获得积分20
12秒前
九月完成签到,获得积分10
14秒前
csz515发布了新的文献求助10
15秒前
15秒前
小蘑菇应助冷艳的冬萱采纳,获得10
16秒前
善学以致用应助REad采纳,获得10
16秒前
慕青应助无糖乌龙茶采纳,获得10
16秒前
16秒前
Jerry完成签到,获得积分10
17秒前
17秒前
天秀之合完成签到,获得积分10
17秒前
17秒前
HXXXY完成签到,获得积分10
18秒前
ccm应助小十一采纳,获得10
18秒前
19秒前
19秒前
20秒前
20秒前
酒九发布了新的文献求助10
20秒前
高分求助中
Shape Determination of Large Sedimental Rock Fragments 2000
Sustainability in Tides Chemistry 2000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3129618
求助须知:如何正确求助?哪些是违规求助? 2780387
关于积分的说明 7747813
捐赠科研通 2435722
什么是DOI,文献DOI怎么找? 1294230
科研通“疑难数据库(出版商)”最低求助积分说明 623601
版权声明 600570