Learning implicit labeling-importance and label correlation for multi-label feature selection with streaming labels

计算机科学 水准点(测量) 特征选择 选择(遗传算法) 维数之咒 相关性(法律) 特征(语言学) 人工智能 特征向量 相关性 流算法 多标签分类 降维 模式识别(心理学) 机器学习 数学 法学 上下界 地理 政治学 大地测量学 数学分析 几何学 语言学 哲学
作者
Jinghua Liu,Wei Wei,Yaojin Lin,Lijie Yang,Hongbo Zhang
出处
期刊:Pattern Recognition [Elsevier BV]
卷期号:147: 110081-110081 被引量:3
标识
DOI:10.1016/j.patcog.2023.110081
摘要

Multi-label feature selection plays an increasingly important role in alleviating the high dimensionality of multi-label learning tasks. Most extant methods posit that the learning task is performed in an environment where the label space is statically known. In reality, however, the environment is open and the labels may arrive dynamically, which is coined as streaming labels. Streaming labels-based multi-label feature selection suffers from many challenges derived from label space: (1) The label space expands dynamically; (2) Newly arrived labels exhibit complex relationships, often involving label correlation and labeling-importance. To cope with this challenge, in this paper, an intuitive yet effective algorithm named LLSL, i.e. learning implicit labeling-importance and label correlation for multi-label feature selection with streaming labels, is proposed. To be specific, the implicit labeling-importance with respect to streaming labels is firstly formalized by conducting the nearest neighbor reconstruction on feature space. Secondly, label correlation is seamlessly integrated into the objective function of feature relevance by designing the feature relevance influence factor. Based on the above, we build a feature conversion, which can realize the fusion of label-specific features for each streaming label. Finally, extensive experiments conducted on fifteen benchmark datasets provide clear evidence that LLSL has superior performance compared to three established streaming label-based MFS algorithms and seven static label space-based MFS algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
yellow发布了新的文献求助10
1秒前
妮妮发布了新的文献求助10
1秒前
SciGPT应助李欣聪采纳,获得10
1秒前
Alily完成签到,获得积分10
1秒前
2秒前
2秒前
可爱的函函应助斌城采纳,获得10
2秒前
2秒前
3秒前
靓丽幻梅发布了新的文献求助10
3秒前
dalin发布了新的文献求助100
3秒前
孟龙威发布了新的文献求助10
3秒前
隐形曼青应助虚幻的青槐采纳,获得10
3秒前
王羲之发布了新的文献求助10
3秒前
hyy发布了新的文献求助10
4秒前
科目三应助eee采纳,获得10
4秒前
4秒前
4秒前
4秒前
5秒前
SciGPT应助sola采纳,获得10
5秒前
科研通AI5应助沉静的丹烟采纳,获得10
5秒前
不爱看文献完成签到,获得积分10
5秒前
6秒前
6秒前
Ye发布了新的文献求助10
6秒前
浮游应助买了束花采纳,获得10
6秒前
高大抽屉完成签到,获得积分20
6秒前
只谈风月应助毕业采纳,获得10
6秒前
犹豫草莓完成签到,获得积分10
6秒前
lucky给lucky的求助进行了留言
7秒前
RXue发布了新的文献求助10
7秒前
啊哈嗯哈哈啊完成签到,获得积分10
7秒前
qianqianqian完成签到,获得积分10
7秒前
JamesPei应助无语的小熊猫采纳,获得10
7秒前
7秒前
科研通AI5应助021采纳,获得10
7秒前
7秒前
123456发布了新的文献求助10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4577004
求助须知:如何正确求助?哪些是违规求助? 3996170
关于积分的说明 12371644
捐赠科研通 3670203
什么是DOI,文献DOI怎么找? 2022678
邀请新用户注册赠送积分活动 1056753
科研通“疑难数据库(出版商)”最低求助积分说明 943949