亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Learning implicit labeling-importance and label correlation for multi-label feature selection with streaming labels

计算机科学 水准点(测量) 特征选择 选择(遗传算法) 维数之咒 相关性(法律) 特征(语言学) 人工智能 特征向量 相关性 流算法 多标签分类 降维 模式识别(心理学) 机器学习 数学 哲学 数学分析 几何学 上下界 语言学 法学 地理 政治学 大地测量学
作者
Jinghua Liu,Wei Wei,Yaojin Lin,Lijie Yang,Hongbo Zhang
出处
期刊:Pattern Recognition [Elsevier]
卷期号:147: 110081-110081 被引量:3
标识
DOI:10.1016/j.patcog.2023.110081
摘要

Multi-label feature selection plays an increasingly important role in alleviating the high dimensionality of multi-label learning tasks. Most extant methods posit that the learning task is performed in an environment where the label space is statically known. In reality, however, the environment is open and the labels may arrive dynamically, which is coined as streaming labels. Streaming labels-based multi-label feature selection suffers from many challenges derived from label space: (1) The label space expands dynamically; (2) Newly arrived labels exhibit complex relationships, often involving label correlation and labeling-importance. To cope with this challenge, in this paper, an intuitive yet effective algorithm named LLSL, i.e. learning implicit labeling-importance and label correlation for multi-label feature selection with streaming labels, is proposed. To be specific, the implicit labeling-importance with respect to streaming labels is firstly formalized by conducting the nearest neighbor reconstruction on feature space. Secondly, label correlation is seamlessly integrated into the objective function of feature relevance by designing the feature relevance influence factor. Based on the above, we build a feature conversion, which can realize the fusion of label-specific features for each streaming label. Finally, extensive experiments conducted on fifteen benchmark datasets provide clear evidence that LLSL has superior performance compared to three established streaming label-based MFS algorithms and seven static label space-based MFS algorithms.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无情的琳发布了新的文献求助10
10秒前
11秒前
迷茫的一代完成签到,获得积分10
15秒前
哈哈哈关注了科研通微信公众号
17秒前
25秒前
32秒前
35秒前
量子星尘发布了新的文献求助10
38秒前
且听风吟完成签到,获得积分10
39秒前
50秒前
1分钟前
嘟嘟嘟嘟发布了新的文献求助10
1分钟前
传奇3应助JodieZhu采纳,获得30
1分钟前
1分钟前
1分钟前
合适的哑铃完成签到,获得积分10
1分钟前
1分钟前
1分钟前
Able完成签到,获得积分10
1分钟前
1分钟前
哈哈哈发布了新的文献求助10
1分钟前
1分钟前
码头整点薯条完成签到,获得积分10
1分钟前
1分钟前
1分钟前
Owen应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
观潮应助码头整点薯条采纳,获得10
2分钟前
Jasper应助码头整点薯条采纳,获得10
2分钟前
2分钟前
2分钟前
春宇浩然发布了新的文献求助10
2分钟前
2分钟前
roro熊完成签到 ,获得积分10
2分钟前
HYQ完成签到 ,获得积分10
2分钟前
JodieZhu完成签到,获得积分10
2分钟前
2分钟前
义气丹雪应助JodieZhu采纳,获得30
2分钟前
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5724022
求助须知:如何正确求助?哪些是违规求助? 5283494
关于积分的说明 15299539
捐赠科研通 4872214
什么是DOI,文献DOI怎么找? 2616665
邀请新用户注册赠送积分活动 1566557
关于科研通互助平台的介绍 1523402