Learning implicit labeling-importance and label correlation for multi-label feature selection with streaming labels

计算机科学 水准点(测量) 特征选择 选择(遗传算法) 维数之咒 相关性(法律) 特征(语言学) 人工智能 特征向量 相关性 流算法 多标签分类 降维 模式识别(心理学) 机器学习 数学 哲学 数学分析 几何学 上下界 语言学 法学 地理 政治学 大地测量学
作者
Jinghua Liu,Wei Wei,Yaojin Lin,Lijie Yang,Hongbo Zhang
出处
期刊:Pattern Recognition [Elsevier]
卷期号:147: 110081-110081 被引量:3
标识
DOI:10.1016/j.patcog.2023.110081
摘要

Multi-label feature selection plays an increasingly important role in alleviating the high dimensionality of multi-label learning tasks. Most extant methods posit that the learning task is performed in an environment where the label space is statically known. In reality, however, the environment is open and the labels may arrive dynamically, which is coined as streaming labels. Streaming labels-based multi-label feature selection suffers from many challenges derived from label space: (1) The label space expands dynamically; (2) Newly arrived labels exhibit complex relationships, often involving label correlation and labeling-importance. To cope with this challenge, in this paper, an intuitive yet effective algorithm named LLSL, i.e. learning implicit labeling-importance and label correlation for multi-label feature selection with streaming labels, is proposed. To be specific, the implicit labeling-importance with respect to streaming labels is firstly formalized by conducting the nearest neighbor reconstruction on feature space. Secondly, label correlation is seamlessly integrated into the objective function of feature relevance by designing the feature relevance influence factor. Based on the above, we build a feature conversion, which can realize the fusion of label-specific features for each streaming label. Finally, extensive experiments conducted on fifteen benchmark datasets provide clear evidence that LLSL has superior performance compared to three established streaming label-based MFS algorithms and seven static label space-based MFS algorithms.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
想人陪的远锋完成签到,获得积分10
刚刚
温柔的尔芙完成签到,获得积分10
1秒前
YYYYYY发布了新的文献求助10
1秒前
111完成签到 ,获得积分10
1秒前
呆萌念云完成签到 ,获得积分10
1秒前
华青ww完成签到,获得积分10
2秒前
2秒前
春风明月完成签到,获得积分10
2秒前
3秒前
3秒前
4秒前
自由能发布了新的文献求助10
4秒前
4秒前
疯狂的水杯完成签到,获得积分10
4秒前
中级中级发布了新的文献求助10
6秒前
激动完成签到 ,获得积分10
7秒前
987发布了新的文献求助10
7秒前
8秒前
泪断梦锁发布了新的文献求助50
8秒前
要努力变强完成签到,获得积分10
8秒前
CodeCraft应助疯狂的水杯采纳,获得10
9秒前
温暖静柏完成签到,获得积分20
9秒前
刘晓倩发布了新的文献求助10
9秒前
BAEK完成签到,获得积分10
10秒前
华仔完成签到,获得积分10
10秒前
10秒前
YYYYYY完成签到,获得积分10
10秒前
凶狠的小兔子完成签到 ,获得积分10
10秒前
ll发布了新的文献求助10
10秒前
科研通AI6应助秒秒采纳,获得10
11秒前
愉快豪完成签到 ,获得积分10
11秒前
11秒前
11秒前
Herrily发布了新的文献求助10
11秒前
量子星尘发布了新的文献求助10
12秒前
14完成签到,获得积分10
12秒前
浮游应助77采纳,获得10
13秒前
15秒前
鱼yu完成签到,获得积分10
15秒前
中级中级完成签到,获得积分10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
COATING AND DRYINGDEEECTSTroubleshooting Operating Problems 600
涂布技术与设备手册 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5569802
求助须知:如何正确求助?哪些是违规求助? 4654951
关于积分的说明 14710692
捐赠科研通 4596026
什么是DOI,文献DOI怎么找? 2522224
邀请新用户注册赠送积分活动 1493421
关于科研通互助平台的介绍 1464030