亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Exploring the link between drought‐related terms and public interests: Global insights from LSTM‐based predictions and Google Trends analysis

缺水 水资源 预期寿命 人口 均方误差 地理 环境科学 统计 数学 人口学 社会学 生态学 生物
作者
Seyed Mohammad Bagher Shahabi‐Haghighi,Hossein Hamidifar
出处
期刊:Hydrological Processes [Wiley]
卷期号:37 (11) 被引量:1
标识
DOI:10.1002/hyp.15016
摘要

Abstract Effective drought monitoring is of paramount importance in hydrology. It aids in mitigating the detrimental effects of water scarcity, facilitates sustainable resource management, and informs policy decisions. Therefore, it is crucial to comprehensively comprehend the dynamics and trends of drought‐related phenomena. This study aims to explore the relationship between six low water quantity terms including drought, water crisis, water scarcity, water shortage, water stress, and water insecurity and some socio‐economic, geographic, and demographic parameters for different regions of the world and to predict the future trend of public interest in the mentioned terms using Long Short‐Term Memory neural network (LSTM) models. Google Trend data analysis was used to examine the public interest in these terms from 2017 to 2022. The LSTM models were trained using historical data on the studied terms, and their performance was evaluated using Root Mean Square Error (RMSE) indicator. The Google Trend data analysis showed that public interest in water shortage and water insecurity increased significantly from 2017 to 2022. The LSTM models showed promising results for predicting future trends in the mentioned water related issues, with RMSE scores (dimensionless) ranging from 0.04 to 0.43. The most significant socio‐economic, geographic and demographic parameters were found to be population, life expectancy, access to drinking water, and access to Internet while there was no correlation between precipitation and searched terms. The results suggest that LSTM models can be an effective tool for forecasting water related issues and emphasizes the importance of socio‐economic, geographic and demographic parameters in the public search behaviour around the world. The study also highlights the increasing public awareness of water related issues and the need for sustainable water management practices, particularly in regions with high water shortage and insecurity. The LSTM‐based prediction models in this study have practical applications in early warning systems for droughts, community education on water conservation, prioritizing vulnerable areas, assessing public perception of climate change's relation to droughts, and evaluating water policies. Further research is needed to improve the accuracy of these models incorporating the effective parameters and to develop effective strategies for managing water resources in regions facing water scarcity.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小fei完成签到,获得积分10
3秒前
JamesPei应助如意的沛萍采纳,获得10
9秒前
麻辣薯条完成签到,获得积分10
13秒前
Emma关注了科研通微信公众号
17秒前
时尚身影完成签到,获得积分10
18秒前
19秒前
leoduo完成签到,获得积分0
22秒前
SSY发布了新的文献求助10
24秒前
流苏2完成签到,获得积分10
27秒前
科研通AI2S应助科研通管家采纳,获得10
31秒前
toutou应助科研通管家采纳,获得10
31秒前
toutou应助科研通管家采纳,获得10
31秒前
帝国之花应助科研通管家采纳,获得10
31秒前
栗子完成签到,获得积分10
31秒前
33秒前
35秒前
38秒前
mjjmm发布了新的文献求助10
41秒前
量子星尘发布了新的文献求助10
49秒前
52秒前
aidengu完成签到 ,获得积分10
53秒前
TEMPO发布了新的文献求助10
58秒前
aidengu发布了新的文献求助30
1分钟前
TEMPO完成签到,获得积分10
1分钟前
1分钟前
yanzilin完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
友好谷蓝发布了新的文献求助10
1分钟前
美美发布了新的文献求助10
1分钟前
轻松新之发布了新的文献求助10
1分钟前
乐乐应助友好谷蓝采纳,获得10
1分钟前
1分钟前
火星上映易完成签到,获得积分10
1分钟前
wanci应助美美采纳,获得10
1分钟前
耳东完成签到,获得积分20
2分钟前
2分钟前
eeevaxxx完成签到 ,获得积分10
2分钟前
sys549发布了新的文献求助10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
从k到英国情人 1700
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5772620
求助须知:如何正确求助?哪些是违规求助? 5600468
关于积分的说明 15429844
捐赠科研通 4905555
什么是DOI,文献DOI怎么找? 2639480
邀请新用户注册赠送积分活动 1587379
关于科研通互助平台的介绍 1542312