Exploring the link between drought‐related terms and public interests: Global insights from LSTM‐based predictions and Google Trends analysis

缺水 水资源 预期寿命 人口 均方误差 地理 环境科学 统计 数学 人口学 社会学 生态学 生物
作者
Seyed Mohammad Bagher Shahabi‐Haghighi,Hossein Hamidifar
出处
期刊:Hydrological Processes [Wiley]
卷期号:37 (11) 被引量:1
标识
DOI:10.1002/hyp.15016
摘要

Abstract Effective drought monitoring is of paramount importance in hydrology. It aids in mitigating the detrimental effects of water scarcity, facilitates sustainable resource management, and informs policy decisions. Therefore, it is crucial to comprehensively comprehend the dynamics and trends of drought‐related phenomena. This study aims to explore the relationship between six low water quantity terms including drought, water crisis, water scarcity, water shortage, water stress, and water insecurity and some socio‐economic, geographic, and demographic parameters for different regions of the world and to predict the future trend of public interest in the mentioned terms using Long Short‐Term Memory neural network (LSTM) models. Google Trend data analysis was used to examine the public interest in these terms from 2017 to 2022. The LSTM models were trained using historical data on the studied terms, and their performance was evaluated using Root Mean Square Error (RMSE) indicator. The Google Trend data analysis showed that public interest in water shortage and water insecurity increased significantly from 2017 to 2022. The LSTM models showed promising results for predicting future trends in the mentioned water related issues, with RMSE scores (dimensionless) ranging from 0.04 to 0.43. The most significant socio‐economic, geographic and demographic parameters were found to be population, life expectancy, access to drinking water, and access to Internet while there was no correlation between precipitation and searched terms. The results suggest that LSTM models can be an effective tool for forecasting water related issues and emphasizes the importance of socio‐economic, geographic and demographic parameters in the public search behaviour around the world. The study also highlights the increasing public awareness of water related issues and the need for sustainable water management practices, particularly in regions with high water shortage and insecurity. The LSTM‐based prediction models in this study have practical applications in early warning systems for droughts, community education on water conservation, prioritizing vulnerable areas, assessing public perception of climate change's relation to droughts, and evaluating water policies. Further research is needed to improve the accuracy of these models incorporating the effective parameters and to develop effective strategies for managing water resources in regions facing water scarcity.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
axiba发布了新的文献求助10
刚刚
0000发布了新的文献求助10
1秒前
1秒前
ke完成签到,获得积分10
1秒前
4秒前
云蓝完成签到,获得积分10
4秒前
真君山山长完成签到,获得积分10
4秒前
4秒前
好的好的完成签到 ,获得积分20
5秒前
5秒前
7秒前
bianollo发布了新的文献求助10
7秒前
鹅小小完成签到,获得积分10
8秒前
多情的紫菜完成签到 ,获得积分10
9秒前
受伤翠容发布了新的文献求助30
9秒前
勿忘心安发布了新的文献求助10
9秒前
moonlight完成签到,获得积分10
9秒前
12秒前
三点完成签到 ,获得积分10
12秒前
好的好的发布了新的文献求助10
12秒前
12秒前
量子星尘发布了新的文献求助10
12秒前
受伤翠容完成签到,获得积分10
13秒前
打打应助xiaochaoge采纳,获得10
14秒前
14秒前
14秒前
重要难摧发布了新的文献求助20
15秒前
Tzh1235发布了新的文献求助50
15秒前
善学以致用应助碧蓝的紊采纳,获得10
15秒前
dnm发布了新的文献求助50
16秒前
axiba发布了新的文献求助10
16秒前
从容的翼发布了新的文献求助10
17秒前
Adzuki0812发布了新的文献求助10
17秒前
Yu_WanZ完成签到,获得积分10
17秒前
wei完成签到,获得积分0
17秒前
bkagyin应助江湖樊南生采纳,获得10
17秒前
十闲发布了新的文献求助10
17秒前
19秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
Sport, Social Media, and Digital Technology: Sociological Approaches 650
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5594225
求助须知:如何正确求助?哪些是违规求助? 4679892
关于积分的说明 14811940
捐赠科研通 4646251
什么是DOI,文献DOI怎么找? 2534795
邀请新用户注册赠送积分活动 1502789
关于科研通互助平台的介绍 1469475