亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Exploring the link between drought‐related terms and public interests: Global insights from LSTM‐based predictions and Google Trends analysis

缺水 水资源 预期寿命 人口 均方误差 地理 环境科学 统计 数学 人口学 社会学 生态学 生物
作者
Seyed Mohammad Bagher Shahabi‐Haghighi,Hossein Hamidifar
出处
期刊:Hydrological Processes [Wiley]
卷期号:37 (11) 被引量:1
标识
DOI:10.1002/hyp.15016
摘要

Abstract Effective drought monitoring is of paramount importance in hydrology. It aids in mitigating the detrimental effects of water scarcity, facilitates sustainable resource management, and informs policy decisions. Therefore, it is crucial to comprehensively comprehend the dynamics and trends of drought‐related phenomena. This study aims to explore the relationship between six low water quantity terms including drought, water crisis, water scarcity, water shortage, water stress, and water insecurity and some socio‐economic, geographic, and demographic parameters for different regions of the world and to predict the future trend of public interest in the mentioned terms using Long Short‐Term Memory neural network (LSTM) models. Google Trend data analysis was used to examine the public interest in these terms from 2017 to 2022. The LSTM models were trained using historical data on the studied terms, and their performance was evaluated using Root Mean Square Error (RMSE) indicator. The Google Trend data analysis showed that public interest in water shortage and water insecurity increased significantly from 2017 to 2022. The LSTM models showed promising results for predicting future trends in the mentioned water related issues, with RMSE scores (dimensionless) ranging from 0.04 to 0.43. The most significant socio‐economic, geographic and demographic parameters were found to be population, life expectancy, access to drinking water, and access to Internet while there was no correlation between precipitation and searched terms. The results suggest that LSTM models can be an effective tool for forecasting water related issues and emphasizes the importance of socio‐economic, geographic and demographic parameters in the public search behaviour around the world. The study also highlights the increasing public awareness of water related issues and the need for sustainable water management practices, particularly in regions with high water shortage and insecurity. The LSTM‐based prediction models in this study have practical applications in early warning systems for droughts, community education on water conservation, prioritizing vulnerable areas, assessing public perception of climate change's relation to droughts, and evaluating water policies. Further research is needed to improve the accuracy of these models incorporating the effective parameters and to develop effective strategies for managing water resources in regions facing water scarcity.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Zed发布了新的文献求助10
2秒前
3秒前
8秒前
11秒前
苏震坤发布了新的文献求助10
17秒前
24秒前
25秒前
容若发布了新的文献求助10
29秒前
量子星尘发布了新的文献求助10
30秒前
33秒前
情怀应助容若采纳,获得10
46秒前
活力的妙菡完成签到,获得积分20
47秒前
1分钟前
舒服的觅云完成签到,获得积分10
1分钟前
苏震坤发布了新的文献求助10
1分钟前
计划完成签到,获得积分10
1分钟前
1分钟前
葛力完成签到,获得积分20
1分钟前
葛力发布了新的文献求助10
1分钟前
1分钟前
gszy1975完成签到,获得积分10
1分钟前
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
科研通AI6应助葛力采纳,获得10
2分钟前
老迟到的梦旋完成签到 ,获得积分10
2分钟前
一只小锦鲤完成签到 ,获得积分10
2分钟前
Licyan完成签到,获得积分10
3分钟前
3分钟前
3分钟前
容若发布了新的文献求助10
3分钟前
3分钟前
3分钟前
上官若男应助爱听歌笑寒采纳,获得10
3分钟前
jimmy_bytheway完成签到,获得积分0
4分钟前
4分钟前
4分钟前
容若发布了新的文献求助10
4分钟前
4分钟前
重庆森林发布了新的文献求助10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Two New β-Class Milbemycins from Streptomyces bingchenggensis: Fermentation, Isolation, Structure Elucidation and Biological Properties 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4611282
求助须知:如何正确求助?哪些是违规求助? 4016845
关于积分的说明 12435757
捐赠科研通 3698687
什么是DOI,文献DOI怎么找? 2039615
邀请新用户注册赠送积分活动 1072446
科研通“疑难数据库(出版商)”最低求助积分说明 956127