Exploring the link between drought‐related terms and public interests: Global insights from LSTM‐based predictions and Google Trends analysis

缺水 水资源 预期寿命 人口 均方误差 地理 环境科学 统计 数学 人口学 社会学 生态学 生物
作者
Seyed Mohammad Bagher Shahabi‐Haghighi,Hossein Hamidifar
出处
期刊:Hydrological Processes [Wiley]
卷期号:37 (11) 被引量:1
标识
DOI:10.1002/hyp.15016
摘要

Abstract Effective drought monitoring is of paramount importance in hydrology. It aids in mitigating the detrimental effects of water scarcity, facilitates sustainable resource management, and informs policy decisions. Therefore, it is crucial to comprehensively comprehend the dynamics and trends of drought‐related phenomena. This study aims to explore the relationship between six low water quantity terms including drought, water crisis, water scarcity, water shortage, water stress, and water insecurity and some socio‐economic, geographic, and demographic parameters for different regions of the world and to predict the future trend of public interest in the mentioned terms using Long Short‐Term Memory neural network (LSTM) models. Google Trend data analysis was used to examine the public interest in these terms from 2017 to 2022. The LSTM models were trained using historical data on the studied terms, and their performance was evaluated using Root Mean Square Error (RMSE) indicator. The Google Trend data analysis showed that public interest in water shortage and water insecurity increased significantly from 2017 to 2022. The LSTM models showed promising results for predicting future trends in the mentioned water related issues, with RMSE scores (dimensionless) ranging from 0.04 to 0.43. The most significant socio‐economic, geographic and demographic parameters were found to be population, life expectancy, access to drinking water, and access to Internet while there was no correlation between precipitation and searched terms. The results suggest that LSTM models can be an effective tool for forecasting water related issues and emphasizes the importance of socio‐economic, geographic and demographic parameters in the public search behaviour around the world. The study also highlights the increasing public awareness of water related issues and the need for sustainable water management practices, particularly in regions with high water shortage and insecurity. The LSTM‐based prediction models in this study have practical applications in early warning systems for droughts, community education on water conservation, prioritizing vulnerable areas, assessing public perception of climate change's relation to droughts, and evaluating water policies. Further research is needed to improve the accuracy of these models incorporating the effective parameters and to develop effective strategies for managing water resources in regions facing water scarcity.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
小蘑菇应助钱宇成采纳,获得10
1秒前
wldsd发布了新的文献求助30
4秒前
充电宝应助王羊补牢采纳,获得10
7秒前
科研通AI2S应助酷酷飞烟采纳,获得10
7秒前
meng发布了新的文献求助30
8秒前
8秒前
完美小蘑菇完成签到,获得积分10
8秒前
兰是一个信仰完成签到,获得积分10
8秒前
潇湘雪月发布了新的文献求助10
11秒前
YJ888发布了新的文献求助10
11秒前
azusa完成签到,获得积分10
15秒前
昔年若许完成签到,获得积分10
22秒前
25秒前
26秒前
28秒前
高手发布了新的文献求助10
28秒前
善学以致用应助1WSQARFGRDSX采纳,获得10
29秒前
ZZZ完成签到,获得积分10
30秒前
ZZZ发布了新的文献求助10
32秒前
一一完成签到 ,获得积分10
32秒前
hp发布了新的文献求助10
34秒前
35秒前
姚世娇完成签到 ,获得积分10
37秒前
FashionBoy应助高手采纳,获得10
38秒前
meng完成签到,获得积分10
39秒前
chennn完成签到,获得积分10
39秒前
41秒前
42秒前
晗月完成签到,获得积分10
42秒前
情怀应助如意枫叶采纳,获得10
43秒前
量子星尘发布了新的文献求助10
45秒前
Akim应助SS采纳,获得10
46秒前
张雷应助清新的夜蕾采纳,获得20
46秒前
chennn发布了新的文献求助10
46秒前
罗一完成签到,获得积分10
48秒前
50秒前
丘比特应助wu采纳,获得10
53秒前
俏皮芷蕊发布了新的文献求助30
53秒前
称心的菲鹰完成签到,获得积分10
54秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989242
求助须知:如何正确求助?哪些是违规求助? 3531393
关于积分的说明 11253753
捐赠科研通 3270010
什么是DOI,文献DOI怎么找? 1804868
邀请新用户注册赠送积分活动 882084
科研通“疑难数据库(出版商)”最低求助积分说明 809136