Exploring the link between drought‐related terms and public interests: Global insights from LSTM‐based predictions and Google Trends analysis

缺水 水资源 预期寿命 人口 均方误差 地理 环境科学 统计 数学 人口学 社会学 生态学 生物
作者
Seyed Mohammad Bagher Shahabi‐Haghighi,Hossein Hamidifar
出处
期刊:Hydrological Processes [Wiley]
卷期号:37 (11) 被引量:1
标识
DOI:10.1002/hyp.15016
摘要

Abstract Effective drought monitoring is of paramount importance in hydrology. It aids in mitigating the detrimental effects of water scarcity, facilitates sustainable resource management, and informs policy decisions. Therefore, it is crucial to comprehensively comprehend the dynamics and trends of drought‐related phenomena. This study aims to explore the relationship between six low water quantity terms including drought, water crisis, water scarcity, water shortage, water stress, and water insecurity and some socio‐economic, geographic, and demographic parameters for different regions of the world and to predict the future trend of public interest in the mentioned terms using Long Short‐Term Memory neural network (LSTM) models. Google Trend data analysis was used to examine the public interest in these terms from 2017 to 2022. The LSTM models were trained using historical data on the studied terms, and their performance was evaluated using Root Mean Square Error (RMSE) indicator. The Google Trend data analysis showed that public interest in water shortage and water insecurity increased significantly from 2017 to 2022. The LSTM models showed promising results for predicting future trends in the mentioned water related issues, with RMSE scores (dimensionless) ranging from 0.04 to 0.43. The most significant socio‐economic, geographic and demographic parameters were found to be population, life expectancy, access to drinking water, and access to Internet while there was no correlation between precipitation and searched terms. The results suggest that LSTM models can be an effective tool for forecasting water related issues and emphasizes the importance of socio‐economic, geographic and demographic parameters in the public search behaviour around the world. The study also highlights the increasing public awareness of water related issues and the need for sustainable water management practices, particularly in regions with high water shortage and insecurity. The LSTM‐based prediction models in this study have practical applications in early warning systems for droughts, community education on water conservation, prioritizing vulnerable areas, assessing public perception of climate change's relation to droughts, and evaluating water policies. Further research is needed to improve the accuracy of these models incorporating the effective parameters and to develop effective strategies for managing water resources in regions facing water scarcity.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
希望天下0贩的0应助Long采纳,获得10
刚刚
1秒前
1秒前
qin发布了新的文献求助10
2秒前
搜集达人应助呆萌滑板采纳,获得10
2秒前
4秒前
zetal发布了新的文献求助10
6秒前
7秒前
风中松鼠发布了新的文献求助10
8秒前
肥牛芋泥泥完成签到,获得积分10
8秒前
sxb10101举报yld求助涉嫌违规
8秒前
10秒前
完美世界应助qin采纳,获得10
10秒前
完美夜云完成签到,获得积分10
11秒前
Long发布了新的文献求助10
11秒前
小北发布了新的文献求助10
11秒前
12秒前
咩咩完成签到 ,获得积分10
13秒前
sxb10101给yld的求助进行了留言
13秒前
笑点低的满天完成签到,获得积分10
14秒前
李健应助黎黎采纳,获得10
15秒前
脑洞疼应助体贴垣采纳,获得10
16秒前
呆萌滑板发布了新的文献求助10
16秒前
16秒前
量子星尘发布了新的文献求助10
18秒前
zfm发布了新的文献求助10
19秒前
量子星尘发布了新的文献求助10
20秒前
20秒前
20秒前
20秒前
20秒前
21秒前
21秒前
21秒前
21秒前
21秒前
科目三应助科研通管家采纳,获得10
21秒前
Ava应助科研通管家采纳,获得10
21秒前
小蘑菇应助科研通管家采纳,获得30
21秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5761193
求助须知:如何正确求助?哪些是违规求助? 5528487
关于积分的说明 15399103
捐赠科研通 4897757
什么是DOI,文献DOI怎么找? 2634428
邀请新用户注册赠送积分活动 1582520
关于科研通互助平台的介绍 1537821