Abstract Optical vortex lattices (OVLs) are gaining increased research attention owing to their unique features related to intensity and phase structure. Interference is a common method for generating an OVL. However, the topological charge (TC) of a single building block in an OVL is fixed and cannot be modulated, thereby limiting its applicability. This study entailed the use of phase multiplication to generate a high‐order OVL to facilitate the arbitrary modulation of its TC. The generated high‐order OVL exhibited the Talbot effect during transmission, and it transformed into a super‐honeycomb lattice at specific fractional Talbot lengths. In addition, an orbital angular momentum developed in the OVL; this has broad application prospects in optical micromanipulation. Further, a method for generating super‐honeycomb lattices is devised. The findings of this study enhances understanding of the Talbot effect and broaden the practical applicability of OVLs.