A novel MRI-based volumetric index for monitoring the motor symptoms in Parkinson's disease

物理医学与康复 不稳 帕金森病 队列 步态 运动障碍 医学 物理疗法 心理学 疾病 内科学
作者
Anupa A. Vijayakumari,Nageswara Mandava,Olivia Hogue,Hubert H. Fernandez,Benjamin L. Walter
出处
期刊:Journal of the Neurological Sciences [Elsevier]
卷期号:453: 120813-120813
标识
DOI:10.1016/j.jns.2023.120813
摘要

Conventional MRI scans have limited usefulness in monitoring Parkinson's disease as they typically do not show any disease-specific brain abnormalities. This study aimed to identify an imaging biomarker for tracking motor symptom progression by using a multivariate statistical approach that can combine gray matter volume information from multiple brain regions into a single score specific to each PD patient.A cohort of 150 patients underwent MRI at baseline and had their motor symptoms tracked for up to 10 years using MDS-UPDRS-III, with motor symptoms focused on total and subscores, including rigidity, bradykinesia, postural instability, and gait disturbances, resting tremor, and postural-kinetic tremor. Gray matter volume extracted from MRI data was summarized into a patient-specific summary score using Mahalanobis distance, MGMV. MDS-UPDRS-III's progression and its association with MGMV were modeled via linear mixed-effects models over 5- and 10-year follow-up periods.Over the 5-year follow-up, there was a significant increase (P < 0.05) in MDS-UPDRS-III total and subscores, except for postural-kinetic tremor. Over the 10-year follow-up, all MDS-UPDRS-III scores increased significantly (P < 0.05). A higher baseline MGMV was associated with a significant increase in MDS-UPDRS-III total, bradykinesia, postural instability and gait disturbances, and resting tremor (P < 0.05) over the 5-year follow-up, but only with total, bradykinesia, and postural instability and gait disturbances during the 10-year follow-up (P < 0.05).Higher MGMV scores were linked to faster motor symptom progression, suggesting it could be a valuable marker for clinicians monitoring Parkinson's disease over time.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
汉关发布了新的文献求助10
2秒前
2秒前
葶儿完成签到,获得积分10
2秒前
安详中蓝完成签到 ,获得积分10
3秒前
呆萌士晋发布了新的文献求助10
3秒前
3秒前
5秒前
呆头发布了新的文献求助10
7秒前
若水发布了新的文献求助200
8秒前
8秒前
9秒前
子川发布了新的文献求助10
9秒前
大头娃娃没下巴完成签到,获得积分10
11秒前
liyuchen完成签到,获得积分10
11秒前
CipherSage应助Lxxx_7采纳,获得10
12秒前
烟花应助永远少年采纳,获得10
12秒前
meng发布了新的文献求助10
14秒前
科研通AI5应助贪吃的猴子采纳,获得10
16秒前
16秒前
可爱的彩虹完成签到,获得积分10
16秒前
小确幸完成签到,获得积分10
16秒前
彭于晏应助毛毛虫采纳,获得10
17秒前
LilyChen完成签到 ,获得积分10
17秒前
Owen应助Su采纳,获得10
17秒前
17秒前
17秒前
18秒前
19秒前
yyyy关注了科研通微信公众号
19秒前
Jane完成签到 ,获得积分10
20秒前
20秒前
20秒前
kento发布了新的文献求助30
20秒前
Akim应助balzacsun采纳,获得10
21秒前
狼来了aas发布了新的文献求助10
21秒前
22秒前
didi完成签到,获得积分10
22秒前
嘻嘻发布了新的文献求助10
24秒前
冲冲冲完成签到 ,获得积分10
24秒前
24秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824