A deep learning and radiomics based Alberta stroke program early CT score method on CTA to evaluate acute ischemic stroke

分割 人工智能 卷积神经网络 深度学习 组内相关 冲程(发动机) 医学 置信区间 Sørensen–骰子系数 计算机科学 人工神经网络 机器学习 模式识别(心理学) 内科学 图像分割 心理测量学 工程类 临床心理学 机械工程
作者
Ting Fang,Naijia Liu,Shengdong Nie,Shouqiang Jia,Xiaodan Ye
出处
期刊:Journal of X-ray Science and Technology [IOS Press]
卷期号:: 1-14
标识
DOI:10.3233/xst-230119
摘要

BACKGROUND: Alberta stroke program early CT score (ASPECTS) is a semi-quantitative evaluation method used to evaluate early ischemic changes in patients with acute ischemic stroke, which can guide physicians in treatment decisions and prognostic judgments. OBJECTIVE: We propose a method combining d eep learning and radiomics to alleviate the problem of large inter-observer variance in ASPECTS faced by physicians and assist them to improve the accuracy and comprehensiveness of the ASPECTS. METHODS: Our study used a brain region segmentation method based on an improved encoding-decoding network. Through the deep convolutional neural network, 10 regions defined for ASPECTS will be obtained. Then, we used Pyradiomics to extract features associated with cerebral infarction and select those significantly associated with stroke to train machine learning classifiers to determine the presence of cerebral infarction in each scored brain region. RESULTS: The experimental results show that the Dice coefficient for brain region segmentation reaches 0.79. Three radioactive features are selected to identify cerebral infarction in brain regions, and the 5-fold cross-validation experiment proves that these 3 features are reliable. The classifier trained based on 3 features reaches prediction performance of AUC = 0.95. Moreover, the intraclass correlation coefficient of ASPECTS between those obtained by the automated ASPECTS method and physicians is 0.86 (95% confidence interval, 0.56-0.96). CONCLUSIONS: This study demonstrates advantages of using a deep learning network to replace the traditional template registration for brain region segmentation, which can determine the shape and location of each brain region more precisely. In addition, a new brain region classifier based on radiomics features has potential to assist physicians in clinical stroke detection and improve the consistency of ASPECTS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
天天快乐应助失眠的莫英采纳,获得10
刚刚
zhaomr完成签到,获得积分10
刚刚
zhuhan发布了新的文献求助10
刚刚
文艺鞋子发布了新的文献求助10
1秒前
1秒前
精明的天薇完成签到,获得积分10
1秒前
宸昶完成签到,获得积分10
2秒前
3秒前
Nero29发布了新的文献求助10
3秒前
4秒前
21完成签到,获得积分10
4秒前
suesue完成签到,获得积分10
4秒前
4秒前
和谐的小懒虫完成签到,获得积分10
4秒前
5秒前
大个应助敏感保温杯采纳,获得10
5秒前
刻苦冬菱完成签到,获得积分10
6秒前
FashionBoy应助顺势而为采纳,获得10
7秒前
研友_VZG7GZ应助文艺鞋子采纳,获得10
7秒前
7秒前
量子星尘发布了新的文献求助150
8秒前
8秒前
8秒前
yyx发布了新的文献求助10
8秒前
学吗完成签到,获得积分10
8秒前
1111完成签到,获得积分10
9秒前
Zoro发布了新的文献求助10
9秒前
9秒前
刻苦冬菱发布了新的文献求助10
10秒前
11秒前
11秒前
12秒前
柠溪完成签到 ,获得积分10
12秒前
师兄弟孝女完成签到,获得积分10
12秒前
12秒前
NexusExplorer应助彩色的荔枝采纳,获得10
12秒前
乐观的水儿完成签到,获得积分10
13秒前
sunshine发布了新的文献求助10
13秒前
瓜子仁发布了新的文献求助10
13秒前
cavendipeng发布了新的文献求助10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Machine Learning for Polymer Informatics 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5409588
求助须知:如何正确求助?哪些是违规求助? 4527170
关于积分的说明 14109460
捐赠科研通 4441675
什么是DOI,文献DOI怎么找? 2437581
邀请新用户注册赠送积分活动 1429526
关于科研通互助平台的介绍 1407703