A deep learning and radiomics based Alberta stroke program early CT score method on CTA to evaluate acute ischemic stroke

分割 人工智能 卷积神经网络 深度学习 组内相关 冲程(发动机) 医学 置信区间 Sørensen–骰子系数 计算机科学 人工神经网络 机器学习 模式识别(心理学) 内科学 图像分割 机械工程 临床心理学 工程类 心理测量学
作者
Ting Fang,Naijia Liu,Shengdong Nie,Shouqiang Jia,Xiaodan Ye
出处
期刊:Journal of X-ray Science and Technology [IOS Press]
卷期号:: 1-14
标识
DOI:10.3233/xst-230119
摘要

BACKGROUND: Alberta stroke program early CT score (ASPECTS) is a semi-quantitative evaluation method used to evaluate early ischemic changes in patients with acute ischemic stroke, which can guide physicians in treatment decisions and prognostic judgments. OBJECTIVE: We propose a method combining d eep learning and radiomics to alleviate the problem of large inter-observer variance in ASPECTS faced by physicians and assist them to improve the accuracy and comprehensiveness of the ASPECTS. METHODS: Our study used a brain region segmentation method based on an improved encoding-decoding network. Through the deep convolutional neural network, 10 regions defined for ASPECTS will be obtained. Then, we used Pyradiomics to extract features associated with cerebral infarction and select those significantly associated with stroke to train machine learning classifiers to determine the presence of cerebral infarction in each scored brain region. RESULTS: The experimental results show that the Dice coefficient for brain region segmentation reaches 0.79. Three radioactive features are selected to identify cerebral infarction in brain regions, and the 5-fold cross-validation experiment proves that these 3 features are reliable. The classifier trained based on 3 features reaches prediction performance of AUC = 0.95. Moreover, the intraclass correlation coefficient of ASPECTS between those obtained by the automated ASPECTS method and physicians is 0.86 (95% confidence interval, 0.56-0.96). CONCLUSIONS: This study demonstrates advantages of using a deep learning network to replace the traditional template registration for brain region segmentation, which can determine the shape and location of each brain region more precisely. In addition, a new brain region classifier based on radiomics features has potential to assist physicians in clinical stroke detection and improve the consistency of ASPECTS.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
净刑完成签到,获得积分20
2秒前
badada发布了新的文献求助10
2秒前
3秒前
欧阳必胜发布了新的文献求助10
3秒前
3秒前
3秒前
sing完成签到,获得积分10
4秒前
冷酷曼卉发布了新的文献求助10
4秒前
旋881完成签到,获得积分10
5秒前
JamesPei应助冷酷代天采纳,获得10
5秒前
海鸥跳海完成签到,获得积分10
5秒前
丁牛青发布了新的文献求助10
5秒前
5秒前
7秒前
Hello应助心旷神怡采纳,获得10
7秒前
尹冰之完成签到,获得积分10
7秒前
8秒前
8秒前
小马甲应助dakjdia采纳,获得10
8秒前
Betty完成签到,获得积分10
9秒前
9秒前
海鸥跳海发布了新的文献求助10
9秒前
9秒前
量子星尘发布了新的文献求助10
10秒前
实物图发布了新的文献求助10
10秒前
司徒诗蕾发布了新的文献求助10
11秒前
11秒前
个性的海之完成签到,获得积分10
12秒前
Hello应助刻苦的穆采纳,获得10
12秒前
12秒前
彭于晏应助苏信怜采纳,获得10
12秒前
ryan发布了新的文献求助10
13秒前
hhhh完成签到,获得积分10
14秒前
14秒前
谢佳霖发布了新的文献求助10
14秒前
yummy小明8888完成签到 ,获得积分10
14秒前
wangdongjiao发布了新的文献求助10
14秒前
完美菜菜发布了新的文献求助10
14秒前
15秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5750645
求助须知:如何正确求助?哪些是违规求助? 5464898
关于积分的说明 15367334
捐赠科研通 4889553
什么是DOI,文献DOI怎么找? 2629305
邀请新用户注册赠送积分活动 1577613
关于科研通互助平台的介绍 1534037