A deep learning and radiomics based Alberta stroke program early CT score method on CTA to evaluate acute ischemic stroke

分割 人工智能 卷积神经网络 深度学习 组内相关 冲程(发动机) 医学 置信区间 Sørensen–骰子系数 计算机科学 人工神经网络 机器学习 模式识别(心理学) 内科学 图像分割 心理测量学 工程类 临床心理学 机械工程
作者
Ting Fang,Naijia Liu,Shengdong Nie,Shouqiang Jia,Xiaodan Ye
出处
期刊:Journal of X-ray Science and Technology [IOS Press]
卷期号:: 1-14
标识
DOI:10.3233/xst-230119
摘要

BACKGROUND: Alberta stroke program early CT score (ASPECTS) is a semi-quantitative evaluation method used to evaluate early ischemic changes in patients with acute ischemic stroke, which can guide physicians in treatment decisions and prognostic judgments. OBJECTIVE: We propose a method combining d eep learning and radiomics to alleviate the problem of large inter-observer variance in ASPECTS faced by physicians and assist them to improve the accuracy and comprehensiveness of the ASPECTS. METHODS: Our study used a brain region segmentation method based on an improved encoding-decoding network. Through the deep convolutional neural network, 10 regions defined for ASPECTS will be obtained. Then, we used Pyradiomics to extract features associated with cerebral infarction and select those significantly associated with stroke to train machine learning classifiers to determine the presence of cerebral infarction in each scored brain region. RESULTS: The experimental results show that the Dice coefficient for brain region segmentation reaches 0.79. Three radioactive features are selected to identify cerebral infarction in brain regions, and the 5-fold cross-validation experiment proves that these 3 features are reliable. The classifier trained based on 3 features reaches prediction performance of AUC = 0.95. Moreover, the intraclass correlation coefficient of ASPECTS between those obtained by the automated ASPECTS method and physicians is 0.86 (95% confidence interval, 0.56-0.96). CONCLUSIONS: This study demonstrates advantages of using a deep learning network to replace the traditional template registration for brain region segmentation, which can determine the shape and location of each brain region more precisely. In addition, a new brain region classifier based on radiomics features has potential to assist physicians in clinical stroke detection and improve the consistency of ASPECTS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
舒服的映安完成签到 ,获得积分10
刚刚
lmh011115发布了新的文献求助10
1秒前
2秒前
一直向前发布了新的文献求助10
2秒前
End完成签到 ,获得积分10
3秒前
沉静的红酒完成签到,获得积分10
4秒前
yzxzdm完成签到 ,获得积分10
4秒前
Yara.H完成签到 ,获得积分10
4秒前
Meng完成签到,获得积分10
5秒前
7秒前
量子星尘发布了新的文献求助10
9秒前
包容追命发布了新的文献求助10
11秒前
11秒前
梦鱼完成签到,获得积分10
12秒前
小林不熬夜完成签到,获得积分10
12秒前
玛卡巴卡完成签到,获得积分10
13秒前
希尔伯特发布了新的文献求助10
15秒前
Jasper应助dailyyang采纳,获得10
15秒前
冬凌草完成签到 ,获得积分10
15秒前
阿若完成签到,获得积分10
15秒前
英姑应助单纯冰棍采纳,获得10
15秒前
高高从霜完成签到 ,获得积分10
16秒前
lmh011115完成签到,获得积分10
16秒前
包容追命完成签到,获得积分20
17秒前
zhenya完成签到,获得积分10
18秒前
xiang929完成签到 ,获得积分10
20秒前
小文子完成签到,获得积分10
20秒前
Mae完成签到 ,获得积分10
21秒前
21秒前
22秒前
22秒前
X欣完成签到,获得积分10
22秒前
lelele完成签到,获得积分10
22秒前
可爱的函函应助luxi0714采纳,获得10
24秒前
月儿完成签到 ,获得积分10
24秒前
小曾应助景清采纳,获得10
25秒前
25秒前
大力的忆霜完成签到,获得积分10
25秒前
贪玩大侠发布了新的文献求助10
26秒前
学不懂数学应助苹果沛柔采纳,获得10
26秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038446
求助须知:如何正确求助?哪些是违规求助? 3576149
关于积分的说明 11374627
捐赠科研通 3305875
什么是DOI,文献DOI怎么找? 1819354
邀请新用户注册赠送积分活动 892680
科研通“疑难数据库(出版商)”最低求助积分说明 815048