A deep learning and radiomics based Alberta stroke program early CT score method on CTA to evaluate acute ischemic stroke

分割 人工智能 卷积神经网络 深度学习 组内相关 冲程(发动机) 医学 置信区间 Sørensen–骰子系数 计算机科学 人工神经网络 机器学习 模式识别(心理学) 内科学 图像分割 心理测量学 工程类 临床心理学 机械工程
作者
Ting Fang,Naijia Liu,Shengdong Nie,Shouqiang Jia,Xiaodan Ye
出处
期刊:Journal of X-ray Science and Technology [IOS Press]
卷期号:: 1-14
标识
DOI:10.3233/xst-230119
摘要

BACKGROUND: Alberta stroke program early CT score (ASPECTS) is a semi-quantitative evaluation method used to evaluate early ischemic changes in patients with acute ischemic stroke, which can guide physicians in treatment decisions and prognostic judgments. OBJECTIVE: We propose a method combining d eep learning and radiomics to alleviate the problem of large inter-observer variance in ASPECTS faced by physicians and assist them to improve the accuracy and comprehensiveness of the ASPECTS. METHODS: Our study used a brain region segmentation method based on an improved encoding-decoding network. Through the deep convolutional neural network, 10 regions defined for ASPECTS will be obtained. Then, we used Pyradiomics to extract features associated with cerebral infarction and select those significantly associated with stroke to train machine learning classifiers to determine the presence of cerebral infarction in each scored brain region. RESULTS: The experimental results show that the Dice coefficient for brain region segmentation reaches 0.79. Three radioactive features are selected to identify cerebral infarction in brain regions, and the 5-fold cross-validation experiment proves that these 3 features are reliable. The classifier trained based on 3 features reaches prediction performance of AUC = 0.95. Moreover, the intraclass correlation coefficient of ASPECTS between those obtained by the automated ASPECTS method and physicians is 0.86 (95% confidence interval, 0.56-0.96). CONCLUSIONS: This study demonstrates advantages of using a deep learning network to replace the traditional template registration for brain region segmentation, which can determine the shape and location of each brain region more precisely. In addition, a new brain region classifier based on radiomics features has potential to assist physicians in clinical stroke detection and improve the consistency of ASPECTS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
秀丽的皮皮虾完成签到 ,获得积分10
刚刚
Hello应助好好好采纳,获得10
2秒前
aixiaoming0503完成签到,获得积分10
2秒前
小橘发布了新的文献求助30
3秒前
任梓宁完成签到 ,获得积分10
3秒前
4秒前
Chen发布了新的文献求助10
6秒前
郭郭关注了科研通微信公众号
6秒前
Lucas应助111采纳,获得30
7秒前
传奇3应助FEOROCHA采纳,获得10
8秒前
11秒前
曾建完成签到 ,获得积分10
12秒前
逢春完成签到,获得积分10
15秒前
七十三度完成签到,获得积分10
15秒前
是猪猪呀完成签到 ,获得积分10
15秒前
Yara.H发布了新的文献求助10
16秒前
欢喜的代容完成签到,获得积分10
17秒前
清新的剑心完成签到 ,获得积分10
17秒前
orixero应助Chen采纳,获得10
19秒前
xwl9955完成签到 ,获得积分10
19秒前
爆米花应助那个笨笨采纳,获得10
20秒前
bckl888完成签到,获得积分10
22秒前
22秒前
研友_EZ1KkL完成签到,获得积分10
23秒前
豆豆完成签到,获得积分10
24秒前
852应助害怕的丹雪采纳,获得10
25秒前
25秒前
YAYA完成签到 ,获得积分10
25秒前
萝卜家大小姐完成签到,获得积分10
27秒前
Accepted应助mrcat采纳,获得10
27秒前
fionaFDU完成签到,获得积分10
27秒前
默默雨竹发布了新的文献求助20
28秒前
28秒前
29秒前
爆米花应助研友_EZ1KkL采纳,获得10
30秒前
30秒前
大啊蓉发布了新的文献求助10
31秒前
丰盛的煎饼应助TzR8采纳,获得10
32秒前
小吴完成签到,获得积分20
33秒前
Ben发布了新的文献求助10
33秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Handbook of Qualitative Cross-Cultural Research Methods 600
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139837
求助须知:如何正确求助?哪些是违规求助? 2790697
关于积分的说明 7796331
捐赠科研通 2447121
什么是DOI,文献DOI怎么找? 1301574
科研通“疑难数据库(出版商)”最低求助积分说明 626305
版权声明 601185