A deep learning and radiomics based Alberta stroke program early CT score method on CTA to evaluate acute ischemic stroke

分割 人工智能 卷积神经网络 深度学习 组内相关 冲程(发动机) 医学 置信区间 Sørensen–骰子系数 计算机科学 人工神经网络 机器学习 模式识别(心理学) 内科学 图像分割 心理测量学 工程类 临床心理学 机械工程
作者
Ting Fang,Naijia Liu,Shengdong Nie,Shouqiang Jia,Xiaodan Ye
出处
期刊:Journal of X-ray Science and Technology [IOS Press]
卷期号:: 1-14
标识
DOI:10.3233/xst-230119
摘要

BACKGROUND: Alberta stroke program early CT score (ASPECTS) is a semi-quantitative evaluation method used to evaluate early ischemic changes in patients with acute ischemic stroke, which can guide physicians in treatment decisions and prognostic judgments. OBJECTIVE: We propose a method combining d eep learning and radiomics to alleviate the problem of large inter-observer variance in ASPECTS faced by physicians and assist them to improve the accuracy and comprehensiveness of the ASPECTS. METHODS: Our study used a brain region segmentation method based on an improved encoding-decoding network. Through the deep convolutional neural network, 10 regions defined for ASPECTS will be obtained. Then, we used Pyradiomics to extract features associated with cerebral infarction and select those significantly associated with stroke to train machine learning classifiers to determine the presence of cerebral infarction in each scored brain region. RESULTS: The experimental results show that the Dice coefficient for brain region segmentation reaches 0.79. Three radioactive features are selected to identify cerebral infarction in brain regions, and the 5-fold cross-validation experiment proves that these 3 features are reliable. The classifier trained based on 3 features reaches prediction performance of AUC = 0.95. Moreover, the intraclass correlation coefficient of ASPECTS between those obtained by the automated ASPECTS method and physicians is 0.86 (95% confidence interval, 0.56-0.96). CONCLUSIONS: This study demonstrates advantages of using a deep learning network to replace the traditional template registration for brain region segmentation, which can determine the shape and location of each brain region more precisely. In addition, a new brain region classifier based on radiomics features has potential to assist physicians in clinical stroke detection and improve the consistency of ASPECTS.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kekekelili完成签到,获得积分10
1秒前
隐形曼青应助天气好的话采纳,获得10
1秒前
万能图书馆应助qianqian采纳,获得10
2秒前
浮游应助PGZ采纳,获得10
3秒前
Wind应助海阔天空独立思考采纳,获得10
3秒前
Lee发布了新的文献求助10
3秒前
4秒前
希望天下0贩的0应助银玥采纳,获得10
4秒前
4秒前
温柔嚣张完成签到 ,获得积分10
5秒前
yummy小明8888完成签到 ,获得积分10
5秒前
6秒前
兴奋的菠萝完成签到,获得积分10
6秒前
棉花完成签到 ,获得积分10
7秒前
8秒前
11秒前
11秒前
倩倩发布了新的文献求助10
12秒前
炙热夜绿完成签到 ,获得积分10
12秒前
12秒前
科研通AI6应助科研通管家采纳,获得10
13秒前
FashionBoy应助科研通管家采纳,获得10
13秒前
花城完成签到 ,获得积分10
13秒前
完美世界应助科研通管家采纳,获得10
13秒前
浮游应助科研通管家采纳,获得10
13秒前
浮游应助科研通管家采纳,获得10
13秒前
浮游应助科研通管家采纳,获得10
13秒前
科研通AI6应助科研通管家采纳,获得10
13秒前
科研通AI6应助科研通管家采纳,获得10
13秒前
沉静的煎蛋完成签到,获得积分10
13秒前
bkagyin应助科研通管家采纳,获得10
14秒前
Ava应助科研通管家采纳,获得10
14秒前
Akim应助科研通管家采纳,获得10
14秒前
香蕉诗蕊应助科研通管家采纳,获得10
14秒前
asdfzxcv应助科研通管家采纳,获得10
14秒前
领导范儿应助科研通管家采纳,获得10
14秒前
香蕉诗蕊应助科研通管家采纳,获得10
14秒前
FashionBoy应助科研通管家采纳,获得10
14秒前
酷波er应助科研通管家采纳,获得10
14秒前
科研通AI6应助科研通管家采纳,获得10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5646335
求助须知:如何正确求助?哪些是违规求助? 4771043
关于积分的说明 15034517
捐赠科研通 4805132
什么是DOI,文献DOI怎么找? 2569436
邀请新用户注册赠送积分活动 1526494
关于科研通互助平台的介绍 1485812