Cross-Modal and Cross-Level Attention Interaction Network for Salient Object Detection

计算机科学 保险丝(电气) 人工智能 RGB颜色模型 互补性(分子生物学) 情态动词 卷积神经网络 模式识别(心理学) 成对比较 工程类 遗传学 生物 电气工程 化学 高分子化学
作者
Fasheng Wang,Yiming Su,Ruimin Wang,Jing Sun,Fuming Sun,Haojie Li
出处
期刊:IEEE transactions on artificial intelligence [Institute of Electrical and Electronics Engineers]
卷期号:5 (6): 2907-2920 被引量:7
标识
DOI:10.1109/tai.2023.3333827
摘要

Most existing RGB-D salient object detection methods utilize the Convolutional Neural Networks (CNNs) to extract features. However, they fail to extract global information due to the inherent defect of sliding window. On the other hand, with the emergence of depth clues, how to effectively incorporate cross-modal features has become an underlying challenge. In addition, in terms of cross-level feature fusion, most methods do not fully consider the complementarity between different layers and usually adopt simple fusion strategies, thereby leading to the missing of detailed information. To relieve these issues, a Cross-modal and Cross-level Attention Interaction Network (CAINet) is proposed. First, different from most existing methods, we adopt a two-stream Swin Transformers to extract RGB and depth features. Second, a High-level Context Refinement Module (HCRM) is designed to further extract refined features and give accurate guidance in early prediction stage. Third, we design a Cross-modal Interaction Enhancement Module (CIEM) to explore the complementarity of different modalities via co-attention. In terms of fusion for high-level and low-level features in decoding, a Multi-scale Attention Induced Decoder (MAID) is designed to extract and fuse the complementary information at different scales. Finally, the Edge Enhancement Module (EEM) is employed to compensate the dilution of edge. Our proposed CAINet achieves excellent performance compared to other state-of-the-art (SOTA) methods on seven widely used datasets.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
liyh发布了新的文献求助30
刚刚
星星不说话完成签到,获得积分10
刚刚
1秒前
英俊的筝完成签到,获得积分10
1秒前
田様应助司徒不二采纳,获得10
1秒前
风中盈完成签到,获得积分10
2秒前
3秒前
3秒前
3秒前
3秒前
小琪发布了新的文献求助10
4秒前
5秒前
5秒前
乐乐应助cenghao采纳,获得10
5秒前
hbzyydx46发布了新的文献求助10
5秒前
5秒前
酷炫的雨莲完成签到,获得积分10
5秒前
隐形的秋灵完成签到,获得积分10
6秒前
6秒前
6秒前
激动的水桃完成签到,获得积分10
6秒前
风趣月饼发布了新的文献求助10
8秒前
ding应助Lemon采纳,获得20
8秒前
斯文败类应助洞两采纳,获得10
9秒前
Orange应助我爱帆帆采纳,获得10
9秒前
9秒前
9秒前
nong12123完成签到,获得积分10
9秒前
手拿把掐完成签到 ,获得积分10
10秒前
Owen应助gloval采纳,获得10
10秒前
zoe完成签到 ,获得积分10
11秒前
11秒前
11秒前
12秒前
12秒前
12秒前
12秒前
13秒前
科研通AI6应助terryok采纳,获得10
13秒前
Ava应助专注大米采纳,获得10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5531254
求助须知:如何正确求助?哪些是违规求助? 4620100
关于积分的说明 14571639
捐赠科研通 4559623
什么是DOI,文献DOI怎么找? 2498523
邀请新用户注册赠送积分活动 1478518
关于科研通互助平台的介绍 1449953