Hybrid IoT Device Selection With Knowledge Transfer for Federated Learning

计算机科学 分布式计算 架空(工程) 学习迁移 催交 资源(消歧) 共享资源 资源管理(计算) 最优化问题 人工智能 计算机网络 算法 操作系统 工程类 系统工程
作者
Qianlong Dang,Guanghui Zhang,Ling Wang,Shuai Yang,Tao Zhan
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:11 (7): 12216-12227 被引量:8
标识
DOI:10.1109/jiot.2023.3334018
摘要

Federated learning (FL) enables collaborative model training across massively distributed edge devices, such as Internet of Things (IoT) nodes. However, resource constraints impose a major challenge, as there exists a trade-off between maximizing learning accuracy and minimizing communication overhead between the resource-limited devices. In this paper, we present a device selection approach for heterogeneous FL systems based on multi-objective optimization and knowledge transfer. We formulate the resource constraint in federated optimization as a multi-objective problem, and obtain Pareto-optimal solutions balancing resource efficiency and test accuracy. Additionally, we introduce an innovative knowledge transfer mechanism that propagates the globally optimal models obtained during multi-objective optimization to subsequent FL tasks, further expediting convergence. The multi-objective formulation and knowledge transfer provide new insights into efficient and robust federated learning for resource-constrained IoT applications. We conduct extensive experiments on real-world datasets. Results demonstrate that our method achieves up to 11% higher accuracy than state-of-the-art methods, while effectively mitigating resource constraints. Impact Statement–Federated learning is an efficient algorithm that enables everything to be interconnected without sharing data. However, resource constraint is the main challenge for federated optimization problems. Although many works have proposed various solutions from different perspectives, these methods cannot simultaneously minimize the communication resource cost while ensuring algorithm performance. We propose an automatic device selection algorithm for federated systems based on multi-objective optimization and knowledge transfer. This work not only reduces the global resource usage rate of federated learning, but also enables it to converge quickly.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
HJJHJH发布了新的文献求助20
2秒前
2秒前
4秒前
4秒前
liyu发布了新的文献求助10
5秒前
wang5945发布了新的文献求助10
6秒前
8秒前
爱老婆发布了新的文献求助10
8秒前
lulul发布了新的文献求助10
9秒前
10秒前
10秒前
tracy10完成签到,获得积分10
11秒前
11秒前
HEIKU应助努力采纳,获得10
11秒前
12秒前
benny279完成签到,获得积分10
12秒前
小猪手发布了新的文献求助10
13秒前
漂亮灵阳完成签到,获得积分10
14秒前
CodeCraft应助小刀采纳,获得10
14秒前
15秒前
黄文博发布了新的文献求助10
15秒前
ccc完成签到,获得积分10
15秒前
15秒前
无花果应助Xiang采纳,获得10
16秒前
CipherSage应助Xiang采纳,获得10
16秒前
16秒前
犹豫寒云完成签到,获得积分10
17秒前
脑洞疼应助安静的火车采纳,获得10
17秒前
tracy10发布了新的文献求助10
18秒前
怦怦应助月半猫采纳,获得10
18秒前
19秒前
19秒前
小顾完成签到,获得积分20
19秒前
在水一方应助科研通管家采纳,获得10
19秒前
Owen应助科研通管家采纳,获得10
19秒前
科研通AI5应助科研通管家采纳,获得10
20秒前
科研通AI5应助科研通管家采纳,获得10
20秒前
SYLH应助科研通管家采纳,获得10
20秒前
Jasper应助科研通管家采纳,获得10
20秒前
上官若男应助科研通管家采纳,获得10
20秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3737471
求助须知:如何正确求助?哪些是违规求助? 3281244
关于积分的说明 10023902
捐赠科研通 2997978
什么是DOI,文献DOI怎么找? 1644908
邀请新用户注册赠送积分活动 782421
科研通“疑难数据库(出版商)”最低求助积分说明 749792