Incentive Mechanism for Federated Learning With Random Client Selection

斯塔克伯格竞赛 计算机科学 子对策完全均衡 子对策 服务器 激励 过程(计算) 机构设计 博弈论 纳什均衡 分布式计算 最佳反应 计算机网络 数学优化 微观经济学 数学 经济 操作系统 ε平衡
作者
Hongyi Wu,Xiaoying Tang,Ying–Jun Angela Zhang,Lin Gao
出处
期刊:IEEE Transactions on Network Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:11 (2): 1922-1933 被引量:1
标识
DOI:10.1109/tnse.2023.3334476
摘要

Federated learning (FL) is a distributed machine learning framework allowing edge devices (a.k.a clients) to participate in training while protecting their privacy. While much research in this field focuses on improving training performance and reducing communication costs, how to incentivize clients to participate in FL still remains a challenge. Most existing FL algorithms assume that clients voluntarily participate in the training process, which is unrealistic. This paper proposes an incentive mechanism for FL servers to motivate clients to contribute their data and computing power to local training. The mechanism consists of two steps. First, a subset of clients is selected randomly under an importance sampling scheme. Then, the interaction between the server and the subset of sampled clients is modeled as a Stackelberg game, where the server releases offers to the clients based on their potential contributions. The clients then decide how much data and computation to contribute. We prove that the client-level subgame of the Stackelberg game has a subgame equilibrium that can be written in a semi-closed form. We also propose an approximation algorithm for computing the subgame equilibrium of the server's level subgame. Our simulation results verify the analysis and demonstrate the effectiveness of the proposed mechanism.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
琦琦发布了新的文献求助10
1秒前
liuzengzhang666完成签到,获得积分10
1秒前
2秒前
。。。完成签到,获得积分10
2秒前
2秒前
3秒前
ED应助牛马人生采纳,获得10
3秒前
achill完成签到,获得积分10
3秒前
Hui完成签到,获得积分10
3秒前
韩soso完成签到,获得积分10
4秒前
迷人幻竹发布了新的文献求助30
4秒前
可爱芷容发布了新的文献求助10
4秒前
动听梨愁完成签到,获得积分10
5秒前
星辰大海应助bluesky采纳,获得10
6秒前
星辰大海应助盛夏蔚来采纳,获得10
6秒前
Embrace发布了新的文献求助10
6秒前
wdy111举报Ann求助涉嫌违规
7秒前
7秒前
dhts应助比巴卜采纳,获得10
8秒前
归尘发布了新的文献求助10
9秒前
9秒前
9秒前
脑洞疼应助Joe采纳,获得20
9秒前
11秒前
李雯完成签到,获得积分10
11秒前
上官若男应助kassidy采纳,获得10
12秒前
夕沫发布了新的文献求助10
12秒前
13秒前
13秒前
13秒前
ws发布了新的文献求助10
13秒前
14秒前
14秒前
书记完成签到,获得积分10
15秒前
土豆丝P完成签到,获得积分10
16秒前
Wind发布了新的文献求助10
17秒前
92626完成签到,获得积分10
17秒前
17秒前
17秒前
SYLH应助云枝采纳,获得10
18秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987267
求助须知:如何正确求助?哪些是违规求助? 3529546
关于积分的说明 11245872
捐赠科研通 3268108
什么是DOI,文献DOI怎么找? 1804089
邀请新用户注册赠送积分活动 881339
科研通“疑难数据库(出版商)”最低求助积分说明 808653