Can Machine Learning Aid the Selection of Percutaneous vs Surgical Revascularization?

医学 传统PCI 经皮冠状动脉介入治疗 血运重建 冠状动脉疾病 内科学 心脏病学 梯度升压 计算机辅助设计 机器学习 外科 心肌梗塞 计算机科学 工程类 随机森林 工程制图
作者
Kai Ninomiya,Shigetaka Kageyama,Hiroki Shiomi,Nozomi Kotoku,Shinichiro Masuda,Pruthvi C. Revaiah,Scot Garg,Neil O’Leary,David van Klaveren,Takeshi Kimura,Yoshinobu Onuma,Patrick W. Serruys
出处
期刊:Journal of the American College of Cardiology [Elsevier]
卷期号:82 (22): 2113-2124 被引量:5
标识
DOI:10.1016/j.jacc.2023.09.818
摘要

In patients with 3-vessel coronary artery disease (CAD) and/or left main CAD, individual risk prediction plays a key role in deciding between percutaneous coronary intervention (PCI) and coronary artery bypass grafting (CABG). The aim of this study was to assess whether these individualized revascularization decisions can be improved by applying machine learning (ML) algorithms and integrating clinical, biological, and anatomical factors. In the SYNTAX (Synergy between PCI with Taxus and Cardiac Surgery) study, ML algorithms (Lasso regression, gradient boosting) were used to develop a prognostic index for 5-year death, which was combined, in the second stage, with assigned treatment (PCI or CABG) and prespecified effect-modifiers: disease type (3-vessel or left main CAD) and anatomical SYNTAX score. The model's discriminative ability to predict the risk of 5-year death and treatment benefit between PCI and CABG was cross-validated in the SYNTAX trial (n = 1,800) and externally validated in the CREDO-Kyoto (Coronary REvascularization Demonstrating Outcome Study in Kyoto) registry (n = 7,362), and then compared with the original SYNTAX score II 2020 (SSII-2020). The hybrid gradient boosting model performed best for predicting 5-year all-cause death with C-indexes of 0.78 (95% CI: 0.75-0.81) in cross-validation and 0.77 (95% CI: 0.76-0.79) in external validation. The ML models discriminated 5-year mortality better than the SSII-2020 in the external validation cohort and identified heterogeneity in the treatment benefit of CABG vs PCI. An ML-based approach for identifying individuals who benefit from CABG or PCI is feasible and effective. Implementation of this model in health care systems—trained to collect large numbers of parameters—may harmonize decision making globally. (Synergy Between PCI With TAXUS and Cardiac Surgery: SYNTAX Extended Survival [SYNTAXES]; NCT03417050; SYNTAX Study: TAXUS Drug-Eluting Stent Versus Coronary Artery Bypass Surgery for the Treatment of Narrowed Arteries; NCT00114972)

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
GLY发布了新的文献求助10
1秒前
hh发布了新的文献求助10
1秒前
杨老师216发布了新的文献求助10
1秒前
woshiyy完成签到 ,获得积分10
3秒前
5秒前
念一发布了新的文献求助10
6秒前
asheng完成签到,获得积分10
7秒前
9秒前
10秒前
11秒前
小蘑菇应助DRDOC采纳,获得10
12秒前
闪闪的摩托完成签到 ,获得积分10
12秒前
12秒前
12秒前
量子星尘发布了新的文献求助10
12秒前
16秒前
17秒前
17秒前
Amazingwss发布了新的文献求助10
17秒前
善学以致用应助开心千青采纳,获得10
19秒前
Ava应助平芜采纳,获得10
19秒前
善学以致用应助zjy采纳,获得10
20秒前
dolla完成签到 ,获得积分10
21秒前
24秒前
FashionBoy应助然年采纳,获得10
24秒前
杨老师216完成签到,获得积分20
24秒前
25秒前
25秒前
华仔应助马东采纳,获得10
27秒前
keke完成签到,获得积分10
27秒前
ddddd完成签到,获得积分10
27秒前
27秒前
怕黑惜文关注了科研通微信公众号
27秒前
29秒前
29秒前
liu完成签到,获得积分10
29秒前
眼睛大的新之完成签到,获得积分10
30秒前
霓霓发布了新的文献求助10
30秒前
热情礼貌一问三不知完成签到 ,获得积分10
30秒前
31秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5745737
求助须知:如何正确求助?哪些是违规求助? 5428474
关于积分的说明 15353979
捐赠科研通 4885673
什么是DOI,文献DOI怎么找? 2626875
邀请新用户注册赠送积分活动 1575393
关于科研通互助平台的介绍 1532134