Can Machine Learning Aid the Selection of Percutaneous vs Surgical Revascularization?

医学 传统PCI 经皮冠状动脉介入治疗 血运重建 冠状动脉疾病 内科学 心脏病学 梯度升压 计算机辅助设计 机器学习 外科 心肌梗塞 计算机科学 工程类 随机森林 工程制图
作者
Kai Ninomiya,Shigetaka Kageyama,Hiroki Shiomi,Nozomi Kotoku,Shinichiro Masuda,Pruthvi C. Revaiah,Scot Garg,Neil O’Leary,David van Klaveren,Takeshi Kimura,Yoshinobu Onuma,Patrick W. Serruys
出处
期刊:Journal of the American College of Cardiology [Elsevier]
卷期号:82 (22): 2113-2124 被引量:5
标识
DOI:10.1016/j.jacc.2023.09.818
摘要

In patients with 3-vessel coronary artery disease (CAD) and/or left main CAD, individual risk prediction plays a key role in deciding between percutaneous coronary intervention (PCI) and coronary artery bypass grafting (CABG). The aim of this study was to assess whether these individualized revascularization decisions can be improved by applying machine learning (ML) algorithms and integrating clinical, biological, and anatomical factors. In the SYNTAX (Synergy between PCI with Taxus and Cardiac Surgery) study, ML algorithms (Lasso regression, gradient boosting) were used to develop a prognostic index for 5-year death, which was combined, in the second stage, with assigned treatment (PCI or CABG) and prespecified effect-modifiers: disease type (3-vessel or left main CAD) and anatomical SYNTAX score. The model's discriminative ability to predict the risk of 5-year death and treatment benefit between PCI and CABG was cross-validated in the SYNTAX trial (n = 1,800) and externally validated in the CREDO-Kyoto (Coronary REvascularization Demonstrating Outcome Study in Kyoto) registry (n = 7,362), and then compared with the original SYNTAX score II 2020 (SSII-2020). The hybrid gradient boosting model performed best for predicting 5-year all-cause death with C-indexes of 0.78 (95% CI: 0.75-0.81) in cross-validation and 0.77 (95% CI: 0.76-0.79) in external validation. The ML models discriminated 5-year mortality better than the SSII-2020 in the external validation cohort and identified heterogeneity in the treatment benefit of CABG vs PCI. An ML-based approach for identifying individuals who benefit from CABG or PCI is feasible and effective. Implementation of this model in health care systems—trained to collect large numbers of parameters—may harmonize decision making globally. (Synergy Between PCI With TAXUS and Cardiac Surgery: SYNTAX Extended Survival [SYNTAXES]; NCT03417050; SYNTAX Study: TAXUS Drug-Eluting Stent Versus Coronary Artery Bypass Surgery for the Treatment of Narrowed Arteries; NCT00114972)
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
活泼的绿竹完成签到,获得积分10
3秒前
互助遵法尚德应助Ventus采纳,获得10
4秒前
6秒前
刘一刀完成签到,获得积分10
6秒前
6秒前
加菲丰丰举报三岁半求助涉嫌违规
7秒前
HY发布了新的文献求助10
11秒前
FUTURE发布了新的文献求助10
11秒前
云汐儿完成签到 ,获得积分10
11秒前
共享精神应助科研通管家采纳,获得10
14秒前
所所应助科研通管家采纳,获得10
14秒前
科研通AI2S应助科研通管家采纳,获得30
14秒前
quarter应助科研通管家采纳,获得10
14秒前
ding应助科研通管家采纳,获得10
14秒前
qin希望应助科研通管家采纳,获得10
14秒前
吉千凡应助科研通管家采纳,获得10
14秒前
paparazzi221应助科研通管家采纳,获得80
15秒前
15秒前
向日葵应助科研通管家采纳,获得10
15秒前
东方三问应助科研通管家采纳,获得10
15秒前
qin希望应助科研通管家采纳,获得10
15秒前
David发布了新的文献求助10
15秒前
拾光完成签到,获得积分10
16秒前
17秒前
WQ完成签到 ,获得积分10
17秒前
TORGO完成签到,获得积分10
19秒前
123完成签到,获得积分10
19秒前
19秒前
19秒前
20秒前
21秒前
优雅双双发布了新的文献求助10
23秒前
qqqq22完成签到,获得积分10
25秒前
25秒前
大气青枫完成签到,获得积分10
26秒前
干净千青发布了新的文献求助10
26秒前
26秒前
29秒前
30秒前
小王完成签到,获得积分10
31秒前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137721
求助须知:如何正确求助?哪些是违规求助? 2788646
关于积分的说明 7787887
捐赠科研通 2445011
什么是DOI,文献DOI怎么找? 1300139
科研通“疑难数据库(出版商)”最低求助积分说明 625814
版权声明 601043