Can Machine Learning Aid the Selection of Percutaneous vs Surgical Revascularization?

医学 传统PCI 经皮冠状动脉介入治疗 血运重建 冠状动脉疾病 内科学 心脏病学 梯度升压 计算机辅助设计 机器学习 外科 心肌梗塞 计算机科学 工程类 随机森林 工程制图
作者
Kai Ninomiya,Shigetaka Kageyama,Hiroki Shiomi,Nozomi Kotoku,Shinichiro Masuda,Pruthvi C. Revaiah,Scot Garg,Neil O’Leary,David van Klaveren,Takeshi Kimura,Yoshinobu Onuma,Patrick W. Serruys
出处
期刊:Journal of the American College of Cardiology [Elsevier BV]
卷期号:82 (22): 2113-2124 被引量:5
标识
DOI:10.1016/j.jacc.2023.09.818
摘要

In patients with 3-vessel coronary artery disease (CAD) and/or left main CAD, individual risk prediction plays a key role in deciding between percutaneous coronary intervention (PCI) and coronary artery bypass grafting (CABG). The aim of this study was to assess whether these individualized revascularization decisions can be improved by applying machine learning (ML) algorithms and integrating clinical, biological, and anatomical factors. In the SYNTAX (Synergy between PCI with Taxus and Cardiac Surgery) study, ML algorithms (Lasso regression, gradient boosting) were used to develop a prognostic index for 5-year death, which was combined, in the second stage, with assigned treatment (PCI or CABG) and prespecified effect-modifiers: disease type (3-vessel or left main CAD) and anatomical SYNTAX score. The model's discriminative ability to predict the risk of 5-year death and treatment benefit between PCI and CABG was cross-validated in the SYNTAX trial (n = 1,800) and externally validated in the CREDO-Kyoto (Coronary REvascularization Demonstrating Outcome Study in Kyoto) registry (n = 7,362), and then compared with the original SYNTAX score II 2020 (SSII-2020). The hybrid gradient boosting model performed best for predicting 5-year all-cause death with C-indexes of 0.78 (95% CI: 0.75-0.81) in cross-validation and 0.77 (95% CI: 0.76-0.79) in external validation. The ML models discriminated 5-year mortality better than the SSII-2020 in the external validation cohort and identified heterogeneity in the treatment benefit of CABG vs PCI. An ML-based approach for identifying individuals who benefit from CABG or PCI is feasible and effective. Implementation of this model in health care systems—trained to collect large numbers of parameters—may harmonize decision making globally. (Synergy Between PCI With TAXUS and Cardiac Surgery: SYNTAX Extended Survival [SYNTAXES]; NCT03417050; SYNTAX Study: TAXUS Drug-Eluting Stent Versus Coronary Artery Bypass Surgery for the Treatment of Narrowed Arteries; NCT00114972)
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
linhante完成签到 ,获得积分10
刚刚
背后的傥完成签到,获得积分10
1秒前
雪雪完成签到 ,获得积分10
2秒前
西红柿完成签到,获得积分0
3秒前
冷傲的迎南完成签到 ,获得积分10
3秒前
xiaoguang li完成签到,获得积分10
4秒前
5秒前
鹿c3完成签到,获得积分10
6秒前
7秒前
8秒前
千十一发布了新的文献求助10
9秒前
123完成签到,获得积分10
11秒前
12秒前
AJiE完成签到,获得积分10
13秒前
123发布了新的文献求助10
14秒前
朴实雨竹完成签到,获得积分10
15秒前
彭于晏应助快来和姐妹玩采纳,获得10
18秒前
布曲完成签到 ,获得积分10
20秒前
魏伯安发布了新的文献求助10
21秒前
zhiyu完成签到,获得积分10
22秒前
胡图图完成签到,获得积分10
23秒前
24秒前
夏夜完成签到 ,获得积分10
25秒前
彩色的德地完成签到,获得积分10
25秒前
Kevin应助无语采纳,获得20
26秒前
晨曦完成签到,获得积分10
27秒前
小雅完成签到 ,获得积分10
30秒前
31秒前
lqy完成签到,获得积分20
31秒前
exosome完成签到,获得积分10
35秒前
36秒前
草履虫完成签到,获得积分10
37秒前
Yuu完成签到,获得积分10
39秒前
雁塔完成签到 ,获得积分10
39秒前
任性的傲柏完成签到,获得积分10
40秒前
Nancy发布了新的文献求助30
41秒前
44秒前
ding应助焰色天雷采纳,获得10
45秒前
46秒前
草原狼完成签到,获得积分10
49秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Textures of Liquid Crystals 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3671400
求助须知:如何正确求助?哪些是违规求助? 3228186
关于积分的说明 9778945
捐赠科研通 2938498
什么是DOI,文献DOI怎么找? 1610051
邀请新用户注册赠送积分活动 760520
科研通“疑难数据库(出版商)”最低求助积分说明 736020