卷积神经网络
计算机科学
模式识别(心理学)
癫痫
人工智能
癫痫发作
心理学
神经科学
作者
Dongsheng Liu,Xingchen Dong,Dong Bian,Weidong Zhou
标识
DOI:10.1142/s0129065723500545
摘要
Early seizure prediction is crucial for epilepsy patients to reduce accidental injuries and improve their quality of life. Identifying pre-ictal EEG from the inter-ictal state is particularly challenging due to their nonictal nature and remarkable similarities. In this study, a novel epileptic seizure prediction method is proposed based on multi-head attention (MHA) augmented convolutional neural network (CNN) to address the issue of CNN's limit of capturing global information of input signals. First, data enhancement is performed on original EEG recordings to balance the pre-ictal and inter-ictal EEG data, and the EEG recordings are sliced into 6-second-long EEG segments. Subsequently, EEG time-frequency distribution is obtained using Stockwell transform (ST), and the attention augmented convolutional network is employed for feature extraction and classification. Finally, post-processing is utilized to reduce the false prediction rate (FPR). The CHB-MIT EEG database was used to evaluate the system. The validation results showed a segment-based sensitivity of 98.24% and an event-based sensitivity of 94.78% with a FPR of 0.05/h were yielded, respectively. The satisfying results of the proposed method demonstrate its possible potential for clinical applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI