Effective PM2.5 concentration forecasting based on multiple spatial–temporal GNN for areas without monitoring stations

计算机科学 数据挖掘 空气质量指数 图形 网格 人工神经网络 人工智能 气象学 地理 大地测量学 理论计算机科学
作者
I‐Fang Su,Yu‐Chi Chung,Chiang Lee,Pin-Man Huang
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:234: 121074-121074 被引量:11
标识
DOI:10.1016/j.eswa.2023.121074
摘要

With rapid industrial developments, air pollution has become a hot issue globally. Accurate prediction of PM2.5 (a category of particulate pollutant with a diameter of less than 2.5μm) has been a critical topic, as it can provide valuable information for government decision-making and policy control in environmental management affairs. In this paper, we propose a deep learning model based on graph neural networks (GNNs) to predict the next 48hr PM2.5 concentration in Taiwan. In this model, monitoring stations are regarded as nodes and edges are the distances between monitoring stations. Hence, the distribution of the stations can be perceived as a graph. GNNs are promising in processing non-grid structure data that can be represented as a graph. By incorporating the GNN and gated recurrent units (GRUs), this model can effectively capture the long-term spatial–temporal features in air quality time-series data. In addition, we also investigated the problem of predicting PM2.5 concentrations in the areas without monitoring stations or at sites far away from the stations. This problem has not captured researchers' attention whose methods are based on GNN. The problem is, however, quite challenging as these areas do not have historical air quality data, leading to low prediction quality. Finally, we performed experiments to verify the effectiveness of the proposed model based on actual data sources obtained in Taiwan. The results show that the proposed model exhibits satisfactory prediction performance compared to existing models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
务实的伯云完成签到,获得积分20
1秒前
2秒前
路人甲乙丙丁完成签到,获得积分10
2秒前
马婷婷完成签到,获得积分10
2秒前
2秒前
3秒前
失眠双双应助鄢廷芮采纳,获得10
3秒前
3秒前
4秒前
毛豆应助加菲丰丰采纳,获得10
4秒前
4秒前
斯人发布了新的文献求助10
4秒前
夏夏关注了科研通微信公众号
4秒前
如意静白完成签到,获得积分10
4秒前
情怀应助南吕廿八采纳,获得10
6秒前
6秒前
wangtao发布了新的文献求助10
6秒前
深情安青应助Grinde采纳,获得10
7秒前
7秒前
天天快乐应助天天小女孩采纳,获得10
7秒前
punker发布了新的文献求助10
7秒前
小马甲应助勤奋西牛采纳,获得10
7秒前
7秒前
8秒前
鳗鱼续发布了新的文献求助10
8秒前
8秒前
8秒前
李大仁发布了新的文献求助10
9秒前
yaowenjun完成签到,获得积分10
9秒前
10秒前
xjwang发布了新的文献求助10
10秒前
ANDUIN发布了新的文献求助10
10秒前
xuan完成签到,获得积分10
11秒前
可靠若云发布了新的文献求助10
12秒前
橙子发布了新的文献求助10
13秒前
李大仁完成签到,获得积分10
13秒前
斯人完成签到,获得积分10
14秒前
NIN完成签到 ,获得积分10
14秒前
14秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3305763
求助须知:如何正确求助?哪些是违规求助? 2939395
关于积分的说明 8493534
捐赠科研通 2613845
什么是DOI,文献DOI怎么找? 1427668
科研通“疑难数据库(出版商)”最低求助积分说明 663156
邀请新用户注册赠送积分活动 647945