Effective PM2.5 concentration forecasting based on multiple spatial–temporal GNN for areas without monitoring stations

计算机科学 数据挖掘 空气质量指数 图形 网格 人工神经网络 人工智能 气象学 地理 大地测量学 理论计算机科学
作者
I‐Fang Su,Yu‐Chi Chung,Chiang Lee,Pin-Man Huang
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:234: 121074-121074 被引量:11
标识
DOI:10.1016/j.eswa.2023.121074
摘要

With rapid industrial developments, air pollution has become a hot issue globally. Accurate prediction of PM2.5 (a category of particulate pollutant with a diameter of less than 2.5μm) has been a critical topic, as it can provide valuable information for government decision-making and policy control in environmental management affairs. In this paper, we propose a deep learning model based on graph neural networks (GNNs) to predict the next 48hr PM2.5 concentration in Taiwan. In this model, monitoring stations are regarded as nodes and edges are the distances between monitoring stations. Hence, the distribution of the stations can be perceived as a graph. GNNs are promising in processing non-grid structure data that can be represented as a graph. By incorporating the GNN and gated recurrent units (GRUs), this model can effectively capture the long-term spatial–temporal features in air quality time-series data. In addition, we also investigated the problem of predicting PM2.5 concentrations in the areas without monitoring stations or at sites far away from the stations. This problem has not captured researchers' attention whose methods are based on GNN. The problem is, however, quite challenging as these areas do not have historical air quality data, leading to low prediction quality. Finally, we performed experiments to verify the effectiveness of the proposed model based on actual data sources obtained in Taiwan. The results show that the proposed model exhibits satisfactory prediction performance compared to existing models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
天空之下发布了新的文献求助10
刚刚
刚刚
小豆芽完成签到,获得积分10
刚刚
无花果应助zxd采纳,获得10
刚刚
1秒前
顾矜应助wergou采纳,获得10
1秒前
1秒前
科研通AI6应助王旭采纳,获得10
1秒前
2秒前
2秒前
yk123发布了新的文献求助10
3秒前
hiter发布了新的文献求助30
3秒前
3秒前
3秒前
4秒前
4秒前
Amostre88完成签到,获得积分10
5秒前
bonnie发布了新的文献求助10
5秒前
李可发布了新的文献求助10
5秒前
乾明少侠完成签到 ,获得积分0
6秒前
CipherSage应助wt采纳,获得10
6秒前
may完成签到,获得积分10
6秒前
7秒前
何hyy发布了新的文献求助10
8秒前
DavidShaw发布了新的文献求助10
9秒前
jzpPLA完成签到,获得积分10
9秒前
9秒前
共享精神应助rosyw采纳,获得10
9秒前
9秒前
儒雅熊猫完成签到,获得积分10
10秒前
耘清发布了新的文献求助10
10秒前
11秒前
11秒前
yk123完成签到,获得积分10
12秒前
CipherSage应助Xie采纳,获得10
12秒前
杨蒙博发布了新的文献求助10
13秒前
Fishie发布了新的文献求助10
14秒前
李可完成签到,获得积分10
14秒前
ballball233完成签到 ,获得积分10
15秒前
15秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Handbook of Social and Emotional Learning 500
HEAT TRANSFER EQUIPMENT DESIGN Advanced Study Institute Book 500
Master Curve-Auswertungen und Untersuchung des Größeneffekts für C(T)-Proben - aktuelle Erkenntnisse zur Untersuchung des Master Curve Konzepts für ferritisches Gusseisen mit Kugelgraphit bei dynamischer Beanspruchung (Projekt MCGUSS) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5114705
求助须知:如何正确求助?哪些是违规求助? 4321984
关于积分的说明 13467476
捐赠科研通 4153626
什么是DOI,文献DOI怎么找? 2275948
邀请新用户注册赠送积分活动 1277982
关于科研通互助平台的介绍 1215920