Effective PM2.5 concentration forecasting based on multiple spatial–temporal GNN for areas without monitoring stations

计算机科学 数据挖掘 空气质量指数 图形 网格 人工神经网络 人工智能 气象学 地理 大地测量学 理论计算机科学
作者
I‐Fang Su,Yu‐Chi Chung,Chiang Lee,Pin-Man Huang
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:234: 121074-121074 被引量:11
标识
DOI:10.1016/j.eswa.2023.121074
摘要

With rapid industrial developments, air pollution has become a hot issue globally. Accurate prediction of PM2.5 (a category of particulate pollutant with a diameter of less than 2.5μm) has been a critical topic, as it can provide valuable information for government decision-making and policy control in environmental management affairs. In this paper, we propose a deep learning model based on graph neural networks (GNNs) to predict the next 48hr PM2.5 concentration in Taiwan. In this model, monitoring stations are regarded as nodes and edges are the distances between monitoring stations. Hence, the distribution of the stations can be perceived as a graph. GNNs are promising in processing non-grid structure data that can be represented as a graph. By incorporating the GNN and gated recurrent units (GRUs), this model can effectively capture the long-term spatial–temporal features in air quality time-series data. In addition, we also investigated the problem of predicting PM2.5 concentrations in the areas without monitoring stations or at sites far away from the stations. This problem has not captured researchers' attention whose methods are based on GNN. The problem is, however, quite challenging as these areas do not have historical air quality data, leading to low prediction quality. Finally, we performed experiments to verify the effectiveness of the proposed model based on actual data sources obtained in Taiwan. The results show that the proposed model exhibits satisfactory prediction performance compared to existing models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
JamesPei应助咿咿呀呀采纳,获得10
刚刚
www完成签到,获得积分10
刚刚
科研通AI2S应助Jenny采纳,获得10
1秒前
limin完成签到,获得积分10
2秒前
2秒前
风格完成签到,获得积分10
3秒前
情怀应助专心搞学术采纳,获得20
4秒前
4秒前
zeke发布了新的文献求助10
4秒前
不爱吃糖发布了新的文献求助10
5秒前
852应助冷傲迎梦采纳,获得10
6秒前
陶醉觅夏发布了新的文献求助200
7秒前
7秒前
exile完成签到,获得积分10
8秒前
朱一龙发布了新的文献求助10
8秒前
mawenting完成签到 ,获得积分10
10秒前
zeke完成签到,获得积分10
11秒前
科研通AI5应助solobang采纳,获得10
12秒前
12秒前
小宇OvO发布了新的文献求助10
13秒前
13秒前
忘羡222完成签到,获得积分10
13秒前
专一发布了新的文献求助10
15秒前
跳跃曼文完成签到,获得积分10
16秒前
干将莫邪完成签到,获得积分10
17秒前
SYLH应助exile采纳,获得10
17秒前
小二郎应助魔幻的从梦采纳,获得10
18秒前
19秒前
雪鸽鸽发布了新的文献求助10
19秒前
20秒前
21秒前
21秒前
22秒前
科研通AI5应助朱一龙采纳,获得30
23秒前
SharonDu完成签到 ,获得积分10
24秒前
ayin完成签到,获得积分10
24秒前
25秒前
25秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824