Effective PM2.5 concentration forecasting based on multiple spatial–temporal GNN for areas without monitoring stations

计算机科学 数据挖掘 空气质量指数 图形 网格 人工神经网络 人工智能 气象学 地理 大地测量学 理论计算机科学
作者
I‐Fang Su,Yu‐Chi Chung,Chiang Lee,Pin-Man Huang
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:234: 121074-121074 被引量:11
标识
DOI:10.1016/j.eswa.2023.121074
摘要

With rapid industrial developments, air pollution has become a hot issue globally. Accurate prediction of PM2.5 (a category of particulate pollutant with a diameter of less than 2.5μm) has been a critical topic, as it can provide valuable information for government decision-making and policy control in environmental management affairs. In this paper, we propose a deep learning model based on graph neural networks (GNNs) to predict the next 48hr PM2.5 concentration in Taiwan. In this model, monitoring stations are regarded as nodes and edges are the distances between monitoring stations. Hence, the distribution of the stations can be perceived as a graph. GNNs are promising in processing non-grid structure data that can be represented as a graph. By incorporating the GNN and gated recurrent units (GRUs), this model can effectively capture the long-term spatial–temporal features in air quality time-series data. In addition, we also investigated the problem of predicting PM2.5 concentrations in the areas without monitoring stations or at sites far away from the stations. This problem has not captured researchers' attention whose methods are based on GNN. The problem is, however, quite challenging as these areas do not have historical air quality data, leading to low prediction quality. Finally, we performed experiments to verify the effectiveness of the proposed model based on actual data sources obtained in Taiwan. The results show that the proposed model exhibits satisfactory prediction performance compared to existing models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
漂亮萝莉完成签到,获得积分10
刚刚
嗯嗯嗯嗯发布了新的文献求助10
1秒前
隐形曼青应助科研通管家采纳,获得10
1秒前
田様应助科研通管家采纳,获得10
1秒前
1秒前
子车茗应助科研通管家采纳,获得20
2秒前
2秒前
爆米花应助张豪杰采纳,获得10
2秒前
华仔应助科研通管家采纳,获得10
2秒前
orixero应助科研通管家采纳,获得10
2秒前
科研通AI5应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
2秒前
无花果应助科研通管家采纳,获得10
2秒前
俊逸的绿竹完成签到,获得积分20
3秒前
沉静沛凝发布了新的文献求助10
3秒前
魏俏红完成签到,获得积分10
3秒前
复杂的薯片完成签到,获得积分10
3秒前
TY发布了新的文献求助10
3秒前
4秒前
共享精神应助菜饼哥采纳,获得10
5秒前
5秒前
5秒前
5秒前
酷酷的夏之完成签到,获得积分10
6秒前
研友_VZG7GZ应助minima1998采纳,获得30
7秒前
Hins完成签到,获得积分10
7秒前
8秒前
烟花应助你好采纳,获得10
8秒前
楠楠完成签到 ,获得积分10
8秒前
蓝色花生豆完成签到,获得积分10
8秒前
9秒前
wty完成签到,获得积分10
9秒前
9秒前
9秒前
hhj发布了新的文献求助20
9秒前
科研小白发布了新的文献求助10
10秒前
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
Founding Fathers The Shaping of America 500
Research Handbook on Law and Political Economy Second Edition 398
March's Advanced Organic Chemistry: Reactions, Mechanisms, and Structure 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4558607
求助须知:如何正确求助?哪些是违规求助? 3985544
关于积分的说明 12339263
捐赠科研通 3656005
什么是DOI,文献DOI怎么找? 2014096
邀请新用户注册赠送积分活动 1048954
科研通“疑难数据库(出版商)”最低求助积分说明 937316