Effective PM2.5 concentration forecasting based on multiple spatial–temporal GNN for areas without monitoring stations

计算机科学 数据挖掘 空气质量指数 图形 网格 人工神经网络 人工智能 气象学 地理 大地测量学 理论计算机科学
作者
I‐Fang Su,Yu‐Chi Chung,Chiang Lee,Pin-Man Huang
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:234: 121074-121074 被引量:11
标识
DOI:10.1016/j.eswa.2023.121074
摘要

With rapid industrial developments, air pollution has become a hot issue globally. Accurate prediction of PM2.5 (a category of particulate pollutant with a diameter of less than 2.5μm) has been a critical topic, as it can provide valuable information for government decision-making and policy control in environmental management affairs. In this paper, we propose a deep learning model based on graph neural networks (GNNs) to predict the next 48hr PM2.5 concentration in Taiwan. In this model, monitoring stations are regarded as nodes and edges are the distances between monitoring stations. Hence, the distribution of the stations can be perceived as a graph. GNNs are promising in processing non-grid structure data that can be represented as a graph. By incorporating the GNN and gated recurrent units (GRUs), this model can effectively capture the long-term spatial–temporal features in air quality time-series data. In addition, we also investigated the problem of predicting PM2.5 concentrations in the areas without monitoring stations or at sites far away from the stations. This problem has not captured researchers' attention whose methods are based on GNN. The problem is, however, quite challenging as these areas do not have historical air quality data, leading to low prediction quality. Finally, we performed experiments to verify the effectiveness of the proposed model based on actual data sources obtained in Taiwan. The results show that the proposed model exhibits satisfactory prediction performance compared to existing models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jun完成签到,获得积分10
1秒前
木木圆发布了新的文献求助10
1秒前
Junex发布了新的文献求助10
1秒前
rosenkranz完成签到,获得积分10
1秒前
2秒前
yiw发布了新的文献求助10
3秒前
大模型应助Fine采纳,获得10
3秒前
小杨发布了新的文献求助10
4秒前
玄舟发布了新的文献求助30
4秒前
4秒前
逸鑫林完成签到 ,获得积分10
5秒前
黄婷发布了新的文献求助10
5秒前
5秒前
压缩机完成签到,获得积分10
6秒前
6秒前
哭泣的铅笔完成签到,获得积分10
7秒前
8秒前
自信的雪糕完成签到,获得积分10
9秒前
9秒前
魏少爷发布了新的文献求助10
10秒前
11秒前
Vincy发布了新的文献求助10
13秒前
14秒前
HGQ完成签到,获得积分10
15秒前
默lk完成签到,获得积分10
15秒前
博ge发布了新的文献求助10
15秒前
16秒前
乔达摩完成签到 ,获得积分10
17秒前
DARKNESS完成签到,获得积分10
17秒前
淡定的勒完成签到,获得积分10
17秒前
充电宝应助小杨采纳,获得10
19秒前
19秒前
20秒前
20秒前
郭志晟完成签到,获得积分10
21秒前
11完成签到,获得积分10
21秒前
Angie_qian完成签到,获得积分10
22秒前
22秒前
24秒前
25秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
The Moiseyev Dance Company Tours America: "Wholesome" Comfort during a Cold War 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3980154
求助须知:如何正确求助?哪些是违规求助? 3524160
关于积分的说明 11220159
捐赠科研通 3261641
什么是DOI,文献DOI怎么找? 1800734
邀请新用户注册赠送积分活动 879263
科研通“疑难数据库(出版商)”最低求助积分说明 807232